
The Programming Language "immediate C"

- a language for the “Internet of Things”

Reference Manual

Version 3

John E. Wulff, B.E., M. Eng. Sc.

Abstract

immediate C - iC for short - is a declarative extension of the procedural language C - useful for control
and robotics as well as dealing with events generated in a GUI.

iC utilizes the syntax of C to give meaning to statements that have no semantic support in C. In
addition to standard variables, which are modified by the flow of instructions, iC provides so called
'immediate' variables, whose values are updated, whenever a change of input calls for an immediate
change in output. An efficient Data Flow technique implements this strategy.

iC provides programmers with built in operators, whose function is closely modelled on integrated
circuits. The name iC is a reminder of this fact. Logical AND, OR, EXCLUSIVE-OR and NOT as well as
D flip-flops, SR flip-flops, analog chips and many others are implemented in such a way, that their use
follows the same design rules, which apply to their hardware counterparts. These rules have led to a
well-developed hardware technology, whose effectiveness is demonstrated by the success of today's
complex computer hardware. Particularly the concept of clocked functions plays an important role in
the language iC. It gives the same protection against timing races in iC programs, as it provides for
hardware IC designs. But iC is not a hardware description language nor a simulation language – it
provides the functionality and some of the speed of field-programmable gate arrays to C programmers.

Writing programs in the language iC has the added quality, that many simple ideas and relationships,
which should result in direct actions, can be written down immediately in one line. The coding of call
back routines and other overhead is not required. It was this thought, which also prompted the name
"immediate C".

immediate C can do direct I/O on a Raspberry Pi. Drivers for digital I/O on GPIOs and PiFace cards as
well as a driver for PWM analog output on GPIOs are available. See Appendix B README.RPi.

Copyright © 1985-2021 John E Wulff

SPDX-License-Identifier: GPL-3.0+ OR Artistic-2.0
For more information about this program, or for information on how

to contact the author, see Appendix A README or visit

http://immediateC.net/
https://github.com/JohnWulff/immediateC/

or contact the author at
immediateC@gmail.com

$Id: iC.odt 1.64 2021/04/21

mailto:immediateC@gmail.com
https://github.com/JohnWulff/immediatec
http://immediatec.net/

2

Zusammenfassung

immediate C - kurz iC - ist eine deklarative Erweiterung der prozeduralen Programmiersprache C –
besonders für Automation, Robotik und der Behandlung von Ereignissen aus GUIs geeignet.

iC basiert auf der Syntax von C und gibt vielen Befehlen Bedeutung, die keine semantische
Unterstützung in C haben. Zu den einfachen Variablen, die im normalen Programmfluss verändert
werden, kommen in iC so genannte 'immediate' oder 'sofort' Variablen, dessen Wert sofort verändert
wird, wenn eine Eingangsänderung die sofortige Änderung eines Wertes zur Folge hat. Um dies zu
erreichen, wird eine effiziente Datenfluss-Technik eingesetzt.

iC stellt Programmierern eingebaute Operatoren zur Verfügung, deren Arbeitsweise die Funktionen
von IC-Bausteinen modelliert. Der Name iC soll an diese Tatsache erinnern. Logisches UND, ODER,
EXCLUSIV-ODER und NICHT sowie D flip-flops, SR flip-flops, analoge Bausteine und viele mehr sind
so implementiert, dass deren Anwendung den gleichen Entwurfsregeln entspricht, wie die der
entsprechenden IC-Bausteine. Diese Regeln haben zu einer ausgereiften Technik geführt, deren
Wirksamkeit durch unsere heutige komplexe Computertechnik belegt ist. Besonders das Konzept von
getakteten (clocked) Funktionen spielt in der Sprache iC eine wichtige Rolle. Damit wird derselbe
Schutz gegen Laufzeitprobleme in iC-Programmen erreicht, der damit in IC-Schaltkreisen bewirkt wird.
Aber iC ist keine Hardware-Beschreibungssprache – auch keine Simulationssprache. iC bringt C
Programmierern die Funktionsvielfalt und fast die Geschwindigkeit von FPGAs (field-programmable
gate arrays).

Programme die in iC geschrieben werden, haben das zusätzliche Merkmal, dass viele einfache Ideen
und Zusammenhänge, die zu direkten Aktionen führen sollen, sofort in einer Zeile niedergeschrieben
werden können. Callback-Routinen sind nicht notwendig. Auch dieser Gedanke ist im Namen
"immediate C" enthalten.

immediate C kann direkte Ein/Ausgabe auf einem Raspberry Pi ausführen. Treiber für digitale E/A auf
GPIO's und PiFace Karten sowie ein Treiber für PWM analoge Ausgabe auf GPIO's sind vorhanden.
Siehe Appendix B README.RPi.

Note on language change for iC version 3

Immediate C uses its own pre-compiler immac, whose functionality for pre-compile commands are
nearly identical to those of cpp for C compilers. immediate C uses three different languages in two
types of source files. These are:

1. iC source files (with extension .ic)

• iC language statements compiled by immcc to .c files

• embedded C language statements in conditional and literal blocks compiled by a C compiler .

2. iCa source files (with extension .ica)

• iCa language statements (immediate C with arrays) compiled directly by immac to .ic files.

• both of the above (iC and C language statements).

Since all these statement types can occur in any order and each compiler requires its own pre-
processor the directives require different identifying characters. Version 1 did not have iCa code and
no immac compiler. cpp was used to pre-compile iC code first, with prefix # (#include etc). To hide
pre-compile commands in embedded C code, that prefix was made %# (%#include etc), which was
changed to #include by immcc when extracting C code. Version 2 introduced iCa code which was
given the prefix % (%include etc), which was handled directly by immac. %# was a kludge for C code
and has now been changed for Version 3. The prefixes for the old and new versions are as follows:

"pre-compiler prefix in" Version 1 Version 2 new Version 3

 C code in literal blocks %# %# #
 iC code in .ic and .ica # # %
 iCa code in .ica % %%

This is the only change in the iC language version 3. Experience has shown that pre-compile
commands for embedded C code are the most common. This change makes embedded C code look
like standard C. iCa code uses %%, which matches double braces {{ … }} used in iCa code.

3

Table of Contents
Abstract.. 1

Zusammenfassung... 2

Note on language change for iC version 3 ..2

1 Introduction... 6

1.1 Relationship to Object Orientation..6

1.2 Relationship to procedural Instruction Flow Languages..6

1.3 Programmable Logic Controllers...6

1.4 Relationship to Integrated Circuits..7

1.5 Summary.. 7

2 Language description.. 8

2.1 Immediate Variables ... 8

2.2 Immediate Types.. 8

2.2.1 Immediate declarations ...8

2.2.2 extern immediate declarations..8

2.3 Immediate Expressions ...8

2.4 Operators in immediate expressions ...8

2.4.1 Arithmetic and Relational Operators...9

2.4.2 Bitwise integer Operators..9

2.4.3 Bit Operators... 9

2.4.4 Logical Operators...9

2.4.5 Conditional Operators...9

2.4.6 Comma Operator..10

2.4.7 Parentheses .. 10

2.5 Function and macro calls..10

2.6 Immediate statements ...11

2.6.1 Immediate Assignments ..11

2.6.2 The single assignment rule...11

2.6.3 Aliases.. 11

2.7 I mmediate control statements ...12

2.7.1 Immediate conditional statement if else..12

2.7.2 Immediate switch statement ..12

2.8 Literal blocks... 13

2.9 Comments.. 13

2.10 Scope of immediate statements ..13

2.11 S imple Example ..14

2.12 Intrinsic limitations of immediate statements ...14

2.13 Pragmas... 15

3 Built-in Functions.. 16

3.1 Unclocked flip-flop or LATCH..16

3.2 FORCE function..16

4

3.3 Clocked D flip-flop... 17

3.4 Clocked SR flip-flop.. 17

3.5 Clocked JK flip-flop...18

3.6 Clocked SRX flip-flop..18

3.7 D flip-flop with Set and Reset..18

3.8 Mono-Flop ST(set, timer, delay) or SRT(set, reset, timer, delay)..19

3.9 Sample and Hold..19

3.10 Sample and Hold with Set and Reset..19

3.11 Edge detectors..19

4 Clock Signals.. 20

4.1 Built-in immediate clock ..20

4.2 CLOCK function..20

4.3 TIMER function... 21

4.4 TIMER1 function... 22

5 Inputs and Outputs.. 22

5.1 Built-in Inputs.. 22

5.1.1 iClock.. 22

5.1.2 Timing and miscellaneous inputs..23

5.2 External Inputs and Outputs..23

5.2.1 Digital inputs...24

5.2.2 Digital outputs... 24

5.2.3 Analog inputs..24

5.2.4 Analog outputs..25

6 User defined immediate Function Blocks ..26

6.1 immediate Function Block Definition...26

6.2 immediate Function Block Call..28

7 Arrays... 30

7.1 Immediate Arrays .. 30

7.2 Use of immediate Arrays...30

7.3 Implementation of immediate Arrays...30

7.3.1 FOR loops...32

7.3.2 IF ELSE control statements..33

7.3.3 Index expressions...33

7.3.4 immediate Array syntax..35

7.4 immac Macro facility... 36

7.5 Differences between iC and iCa code...37

7.6 immC Arrays... 38

7.7 Parcel Sorter... 40

8 The iC run-time model ..46

8.1 Combinatorial immediate actions..48

8.2 Clocked immediate actions...51

8.3 Output actions... 52

8.4 Input actions... 52

5

8.5 Input/Output network...52

9 Compiler and Run-time system...53

9.1 Compiler... 53

9.2 Run-time libraries..53

9.3 Run-time environment and system...53

9.3.1 iCbox, iClive and iCman in action..54

9.4 GTKWave Wave Analyzer..56

10 Bibliography.. 58

11 The Author.. 59

Appendix A README... 60

Appendix B README.RPi... 62

Appendix C Type Definition Table...64

6

1 Introduction

immediate C - iC for short - is a declarative extension of the procedural language C. It utilizes the
syntax of C to give meaning to statements that have no semantic support in C. In addition to standard
variables, which are modified by the flow of instructions, iC provides so called 'immediate' variables,
whose values are updated, whenever a change of input calls for an immediate change in output. An
efficient Data Flow technique implements this strategy.

1.1 Relationship to Object Orientation
immediate C uses the OO-paradigm in its concept. Each immediate variable is an independent object,
which acts on other immediate variables by a number of methods. These methods are expressed in a
number of functions and overloaded on to the logical and arithmetic operators. In conventional OO
languages like Smalltalk or C++, a method is an action which acts on the object owning the method.
Conceptually descriptions of Object Orientation talk of methods being actions or messages sent from
one object to another. It is in this sense that iC immediate variable objects interact with each other by
the use of Data Flow techniques.

1.2 Relationship to procedural Instruction Flow Languages
Traditional High Level procedural Languages such as Fortran, Pascal, Basic or C are called Instruction
Flow Languages, because they prescribe a systematic order of statements, functions and commands
to complete a computational task or program. They do this by expressing instruction sequences for an
abstract machine closely modelled on a real computer. By being independent of the actual machine,
these languages have helped to hide unessential details of the hardware, to make programs portable
and to focus the programmer's attention on the problem to be solved. The overwhelming usefulness of
these procedural instruction flow languages to express precise algorithms is recognized in iC, by
including the whole of C as a subset, for dealing with algorithmic problems in established ways.
Learning of the language iC should therefore be very easy for C programmers.

Many of the undesirable characteristics of the underlying hardware are reflected in today's procedural
High Level Languages. These characteristics make it difficult to express a large number of everyday
problems briefly and clearly. Particularly the manipulation of events is not easy to integrate into
programs written in traditional procedural High Level Languages. Yet events play an increasing role in
today's interactive, mouse driven programs. Many different functions must be ready to execute as a
result of external or user generated events, which occur at unpredictable times. The instruction driven
computer only executes a particular instruction, when the flow of instructions in a program gets around
to executing that instruction . This statement may sound pedantic, but much of the complexity of
procedural programs is a direct result of this fundamental truism . How does one organize a program,
so that it can respond quickly to many and varied external events? iC provides answers to this
question. The interrupt mechanism, designed to tackle such problems at a system level, is intractable
for the average programmer and is not supported in a general way by most procedural High Level
Languages. iC harnesses interrupts and hides their complexity.

1.3 Programmable Logic Controllers
The situation is even more critical in systems that deal with a large number of external inputs. In the
early 1980's a completely new class of computer was developed to deal with such problems in the
environment of factories and machine control. These are "Programmable Logic Controllers" or PLC's
for short. (SPS or Speicher-Programmierbare Steuerung in German) Conventional PLC's have a
standard instruction driven architecture. They differ from conventional computers in two main areas:

• They provide bit instructions and data access to individual bits in their instruction set on top of the
more conventional instructions to manipulate data words.

• They have a built in operating system, which runs the stored program over and over. Inputs are
automatically polled at reasonably short intervals and boolean and arithmetic expressions making
up the stored program are re-evaluated continuously. This is necessary, because outputs and
intermediate values in a PLC are assumed to reflect an immediate transformation of the inputs, as
carried out by the expressions of the stored PLC program.

This organization of PLC's has two very serious drawbacks, which are direct consequences of the
differences mentioned:

• Conventional PLC's require a special CPU, which can never be as cheap as a mass produced
microprocessor chip, or they emulate the PLC instruction set, in which case they are slower.

7

• The cyclic execution of the stored program sets very real limits to the length of possible programs.
The longer the program, the longer the cycle time, which is the time interval at which inputs are
polled. If this time gets too long, the response of the PLC is no longer acceptable for many
applications.

PLC's are facing a crisis on two fronts:

• Traditionally PLC program memories in the 80's were measured in kilobytes. Today megabytes of
memory are available at low cost. This 1000 fold increase in potential program size cannot be
utilized with the cyclic execution strategy of conventional PLC's. Even with a 10 fold increase in
speed, these machines would be too slow. (Gigabytes is standard in the 21st century)

Because PLC's are completely compute bound, the type of program organization they use is
unacceptable for standard computers. Nevertheless many programmers designing event controlled
applications on standard computers resort to polling schemes, despite the drawbacks involved. The
procedural High Level Languages they use do not give them any simple alternatives.

• The second crisis is the lack of a High Level Language for PLC's. Most PLC programs are
developed with antiquated tools that support semi graphical languages for Boolean logic and
assembly programming for numerical subsystems. The international standard IEC-1131 is
attempting to fill this vacuum by specifying such a language. Unfortunately this standard simply
freezes current programming practice, by incorporating five different languages, four of which are
the semi graphical and assembly languages in common use today. For algorithmic programming it
introduces a completely new High Level Language called 'Structured Text', which will require a
large learning effort by programmers and whose utility in the limited area of PLC's seems doubtful.
IEC-1131 makes no attempt to confront the fundamental speed problems facing PLC users.

The declarative language iC can be used to program standard computer systems and PLC's in a
uniform way. iC is fast, because it responds in microseconds to any changes in input, and does not
waste time evaluating expressions, whose input operands have not changed. The extensions which iC
offers over the algorithmic language C, can also be coded graphically, using current CAD packages for
IC design. For factory staff, who require very simple programming methods, the use of Ladder
Diagram (LD) or Function Block Diagram (FBD) in conformity with IEC-1131, using suitable front ends
is possible.

1.4 Relationship to Integrated Circuits
iC provides programmers with built in operators, whose function is closely modelled on integrated
circuits. The name iC is a reminder of this fact. Logical AND, OR, EXCLUSIVE-OR and NOT are the
basic functions implemented using a very fast data-flow algorithm. The full range of arithmetic
operators is also available. These are not normally considered as hardware components, although
once they formed the basis of the very important “Analog Computer”. They can be used for
implementing control algorithms, fuzzy logic – the possibilities are endless. Also implemented as
efficient built in functions are the D flip-flop, SR flip-flop, JK flip-flop, shift register and many other
popular integrated circuit types, which are implemented in such a way, that their use in iC programs
follows the same design rules, which apply to their hardware counterparts. These rules have led to a
well-developed hardware technology, whose effectiveness is demonstrated by the success of today's
complex computer hardware. Particularly the concept of clocked function blocks plays an important
role in the language iC. It gives the same protection against timing races in iC programs, as it provides
for hardware IC designs.

Another idea taken from integrated circuits is Large-Scale-Integration. User defined Function Blocks
emulate LSI circuits and produce complex sub-units with a known functionality and a well defined
external interface, which can be re-used without regard to the internals. IC hardware design may not
be part of the average programmers repertoire, but there is much literature on the subject. The run-
time code is not meant to be just a simulation of IC hardware – the generated code is extremely fast,
because of the data-flow techniques used and provides powerful control programs.

1.5 Summary
Writing programs in the language iC has the added quality, that many simple ideas and relationships,
which should result in direct actions, can be written down immediately in one line.

if (IX0.0) { printf(”Hello! world\n”); }

This is a complete runnable iC program. IX0.0 is an external immediate bit input in IEC-1131
notation, which generates an event when it changes state. The coding of call back routines and other
overhead is not required. It was this thought, which also prompted the name "immediate C".

8

2 Language description

2.1 Immediate Variables
An immediate variable is a data object that has a value, but which also has the ability to transmit any
change in its value as an event. This event triggers the re-calculation of all expressions that contain the
immediate variable. The fundamental assumption is, that the value of an expression only changes,
if one of the variables making up the expression changes. Thus it is only necessary to re-calculate
an expression, if one of the variables making up the expression changes. Conversely, if an expression
is re-calculated whenever one of its variables changes, and all unnecessary recalculations of
expressions are left out, the value of all expressions will be up to date within a very short time.
Immediate variables provide the mechanism to make this strategy possible.

2.2 Immediate Types
iC introduces the type modifier imm or immC to declare immediate variables of the basic data types
int in C and the basic data type bit, which is a new data type in iC. Type bit declares variables
capable of holding the values 0 and 1, which can also be written as LO and HI. Since bit is not a
type in C or C++, the use of type bit is restricted to use in iC code. The word 'boolean' was avoided
deliberately, because it has a different semantic bias in languages where it is used. (Truth of a test
rather than a single bit object). Both imm int and imm bit are value types, which must be assigned
once (and only once) in an immediate statement. immC int and immC bit are special immediate
value types, which must be assigned one or more times in C code.

iC also has clocking types imm clock and imm timer, which can only be used as function
parameters of clocked function blocks. These will be discussed later.

2.2.1 Immediate declarations
An immediate declaration declares an immediate variable to be either of type imm int, imm bit,
immC int, immC bit, imm clock or imm timer, using syntax similar to declarations in C. Calling
the immcc compiler with the strict option -S or the statement use strict, which is the default since
iC Version 2, makes declarations mandatory for all imm variables. All variables in a declaration may be
assigned in the declaration. Calling the immcc compiler with the no-strict option -N or the statement
no strict, any value type variable not declared before it is used is assumed to be of type imm bit.
Undeclared clocking type variables inherit the type from the assigning function. no strict, is
deprecated because it can easily lead to subtle errors.

imm int fader, colour; // declaration only
imm int brightness = fader * colour; // decl with assignment
immC bit running; // used in C assignment

2.2.2 extern immediate declarations
Just like in C, several iC sources may be compiled separately and linked into a single application.
When immediate variables declared and assigned in one source are referenced in another source,
they must be declared with an extern declaration, before they can be used in an expression.

extern imm int fader, colour;
extern imm int brightness;
extern immC bit running;

2.3 Immediate Expressions
Immediate expressions are arithmetic or logical expressions external to all functions, which contain at
least one immediate value variable or function block call. An immediate expression is re-evaluated
whenever the value of one of the immediate variables it contains has changed (and only then).
This is the core of the iC event-driven strategy . All immediate expressions may contain constants,
although they are mostly useless in logical expressions, and therefore not common in logical
expressions. If an expression consists only of constants it is a constant arithmetic expression
evaluated at compile time (similar to global initialisation in C).

2.4 Operators in immediate expressions
Most operators available in C may be used in immediate expressions. The precedence of the operators
is the same as in C. Some C operators are not valid for immediate expressions, because the
semantics in iC are different. These are the increment and decrement operators ++ and --, as well as

9

structure and pointer operators -> .(dot) &(address of) and *(pointer dereference). Assignment
expressions += etc. are also not allowed. These restrictions do not apply to embedded C code in
literal blocks and immediate if else or switch statements, which will be introduced later.

Array variables and index expressions using [] are available with the Array extensions of the language
either as immC Arrays or using imm variables using the pre-compiler immac (called automatically). See
section 7 .

2.4.1 Arithmetic and Relational Operators
The binary arithmetic operators + - * /, the modulo operator %, as well as unary - and + operate on
integer numeric values, usually of type imm int or constants, and yield numeric results of type imm
int. The same applies to the shift operators << and >>. If one or both of the operands used with one
of these operators is type imm bit, automatic type conversion takes place. Values of type imm bit
are converted to the int values 0 or 1 corresponding to the values of the bit. The relational and
equality operators <, <=, >, >=, ==, != also have numeric operands, but these operators yield imm
bit results by default.

Immediate arithmetic, relational and bitwise integer expressions with numeric operands may and often
do contain constants, as well as immediate operands.

2.4.2 Bitwise integer Operators
If both operands of the binary operators &, |, ^ or the single operand of operator ~ are numeric values
of type imm int or constants, these operators carry out bitwise manipulation on their integer
operands – just like in C. The result is an imm int numeric value interpreted as a string of bits.

2.4.3 Bit Operators
If one or both of the operands of the binary operators &, |, ^ or the single operand of operator ~ are of
type imm bit, these operators carry out the bit manipulation operations and, or, exclusive-or and
not on imm bit objects. The result is an imm bit. Any operands of type imm int are converted to
imm bit. The numeric value 0 converts to 0 (LO), any other numeric value converts to 1 (HI). The
bit operators are used frequently in immediate C, since bit manipulation is very common in event driven
systems – more so than in algorithmic programs written in conventional languages like C, which does
not even provide a type bit. Such logical bit expressions in immediate C may not contain any non-
immediate variables. Constants are allowed, although they do not make much sense. They either do
not change a variable e.g. a & 1 === a; b | 0 === b or they produce another constant e.g.
c & 0 === 0; d | 1 === 1 and ~1 === 0.

2.4.4 Logical Operators
The logical connectives && and || are executed as arithmetic expressions, when one or both of the
operands are of type imm int. Evaluation is from left to right, and evaluation stops when the truth or
falsehood of the result is known – just like in C. The result is of type imm bit by default. The unary
complement operator !, operating on an imm int operand produces an imm bit result.

The operators &&, || and ! with only imm bit operands are interpreted by the compiler exactly like
the bit operators &, | and ~, although there is really no point. Since evaluation does not stop when the
result is known, the use of && and || and ! in expressions where all operands are imm bit is
deprecated and causes a warning if no strict and an error if use strict (which is the default).

2.4.5 Conditional Operators
The operators ? : implement conditional expressions, just like in C, which are evaluated as a whole
in an arithmetic context. The conditional expression

expression_1 ? expression_2 : expression_3

is a valid immediate arithmetic expression, which is triggered by a change in any immediate variable in
any of the three sub-expressions.

An alternate form of conditional expression, which leaves out the middle expression is allowed by
modern C compilers, particularly by gcc and is allowed in iC (if the C compiler used supports the
construct)

expression_1 ? : expression_3

The following excerpt from 'info gcc explains the advantages and use of the construct:

5.8 Conditionals with Omitted Operands

10

The middle operand in a conditional expression may be omitted. Then if the first operand is non-zero, its value is the
value of the conditional expression.

 Therefore, the expression

 x ? : y

has the value of `x' if that is non-zero; otherwise, the value of `y'.

 This example is perfectly equivalent to

 x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When it becomes useful is when
the first operand does, or may (if it is a macro argument), contain a side effect. Then repeating the operand in the
middle would perform the side effect twice. Omitting the middle operand uses the value already computed without the
undesirable effects of re-computing it.

2.4.6 Comma Operator
Commas used as operators have the lowest precedence and are only available in iC as a list of
expressions in parentheses with further restrictions. As in C the value of the list is the last expression
in the list, which may be a plain expression. The leading elements must be either assignments or
immediate void function calls for the same reason that plain expression statements are not allowed in
iC as explained in the 2nd paragraph of section 2.6.1.

2.4.7 Parentheses
In immediate C it is possible to write mixed arithmetic and bit expressions, nested to any depth using
the usual C precedence rules and parentheses.

Immediate arithmetic expressions are evaluated as a whole C expression every time one of their
component immediate variables changes – but only then. To improve execution speed, it is sometimes
more efficient to break up very long immediate arithmetic expressions with many operands into several
sub-expressions – particularly if each sub-expression is triggered by different operands. In this case
not all the sub-expressions are executed. On the other hand there is a certain amount of overhead for
triggering each new node and execution of a compiled C expression is fast, even if it has many
operands.

Immediate bit expressions are compiled into a network of forward looking nodes, one for each different
bit operand and execute even more efficiently. There is no need to break up a complex immediate bit
expression into sub-expressions – the compiler does this already. Immediate bit expressions
embedded in an arithmetic expression are compiled into separate sub-expressions and only the type
converted arithmetic result is used in the arithmetic expression.

2.5 Function and macro calls
Immediate expressions may contain function calls for several types of functions and macros. All of
these look very similar to C function calls. The differences will be discussed in later chapters. These
can be:

1. Built in iC function calls. The parameter ramps and return values are pre-defined.

2. User defined iC function block calls. These must be defined by the user before they are called.

3. C function calls – only allowed in immediate arithmetic expressions and C code of course.

4. C pre-processor macro calls.

C function and macros called in immediate expressions may only have int parameters (if any) and an
int return value. They should be declared in iC code as follows to evoke an error message if the
function name is mistyped or the parameter ramp or return value is wrong:

extern int rand(); // C function with no parameters
extern int rand(void); // the same with alternative syntax
extern int abs(int); // C function with 1 parameter
extern int min(int, int); // C macro with 2 parameters

Any C functions or macros, which are called in immediate expressions must be declared in the iC code
(use strict is the default). With no strict (deprecated), mistyped function names with any type
of parameter ramp look like C function calls and will be compiled as such without error. This error is not
discovered until link time. With an iC extern declaration, a clean error message is produced and the
extra effort is not great. When a pre-declared C function or macro is called in an immediate expression,
a check is made, that the number of parameters is correct. Otherwise an error message is issued.

If declared a second time, the following will evoke a warning if use strict

11

extern bit rand(); // wrong return type – converted to int

If declared a second time, the following will evoke an error if 'strict'

extern int rand; // not used as a function
extern clock rand(); // absolutely wrong return type
extern timer rand(); // absolutely wrong return type

No check is made for C function calls in C fragments controlled by if else or switch statements or
other literal C code, since the compilation is handled by the follow up C compiler. Note: built in iC
functions and iC function blocks cannot be called in such C fragments under any circumstances.

2.6 Immediate statements
Most immediate statements are immediate declarations or immediate assignments terminated by a
semicolon. Immediate declarations and assignments may be combined. Other statements are
immediate function definitions, immediate void function block calls and finally immediate control
statements if else and switch.

2.6.1 Immediate Assignments
Immediate assignments are assignments of immediate expressions to immediate variables external to
all functions. Value changes to an immediate variable are detected in the assignment and this event
triggers the re-calculation of follow on expressions. Like in C, an immediate assignment is also an
immediate expression, which means that assignments embedded in expressions are allowed. As noted
earlier, immediate assignments can be combined with the declarations of immediate variables, but
such declaration assignments are not an expression.

Plain expression statements, which are not assigned to anything, as in C are meaningless in iC and
are not allowed. They would only have meaning if they had a side effect and these have been carefully
avoided in iC. An exception would be an immediate function call that also assigns another value to one
or more of its parameters. Since this is rare it was felt that it was more important to use the return value
or evoke an error.

2.6.2 The single assignment rule
Immediate assignments must obey the single assignment rule, a rule which applies generally for data
flow systems1. Any immediate variable may only be assigned in one immediate assignment . The value
of an immediate variable is the value of the single expression, from which it is assigned, at all times. A
second assignment to the same immediate variable would force different values on that variable,
causing a conflict. The immediate variable being assigned cannot hold different values simultaneously.
The single assignment rule is monitored by the iC compiler. An error message is generated if it is
broken.

Expressions that occur in C code triggered by immediate conditional if else or switch
statements or in C functions in literal blocks may contain imm or immC immediate variables. These
expressions are not immediate expressions and are not triggered by those variables. When such an
expression is executed in the C code, the current value of any immediate variable is used.

Immediate variables declared with immC may even be assigned in C code embedded in immediate
conditional if else or switch statements or in literal blocks. Such an assignment is not an
immediate assignment – the value is changed when the C statement is executed. Nevertheless any
change in the immediate variable assigned in the C code will trigger immediate expressions that
contain that variable. Several such assignments to the same immediate variable may be made in
different sections of C code. Every new assignment changes the variable in accordance with the
intended algorithm. Immediate variables assigned in C code must be declared as immC bit or immC
int in an iC code section. An immediate variable that is assigned in C code may not also be assigned
in an immediate assignment.

2.6.3 Aliases
Immediate arithmetic and bit assignments, in which the right hand expression consists of only a single
immediate variable or a constant expression are accepted by the iC compiler, but generate no code.
This type of statement is called an alias. The alias name on the left hand side is simply an alternative
name for the immediate variable or the result of a constant expression on the right hand side. Any
reference to the alias will be substituted by the right hand side variable or constant result, whose value
is always the correct value of the intended assignment.

1 see Werner Kluge: The organization of Reduction, Data Flow, and Control Flow Systems - pp. 317.
 The MIT Press 1992. [Kluge92]

12

Bit aliases may be either normal or inverting. The bit NOT operator ~ does not generate any code
when used on an imm bit operand. All ~x sub-expressions are implemented as inverting aliases of
x. Thus the direct assignment of ~x to another imm bit variable is also an (inverting) alias.

imm bit a, b; b = a; // b is an alias for a (normal)
imm bit x, nx; nx = ~x; // nx is an alias for ~x (inverting)
imm int j, k; k = j; // k is an alias for j
imm int two; two = 2; // two is an alias for 2
imm int area; area = 4 * 5;// area is an alias for 20

2.7 Immediate control statements
An immediate conditional if else statement and an immediate switch statement are the only
control constructs available in iC. The syntax of both statement types is similar to their C counterpart,
except that braces around the C statements are mandatory. In particular an else if is not allowed, since
the if after the else would have been part of the C statement controlled by the else part of the whole
immediate if statement, which would be very confusing.

if (imm_bit_expression) { C_statement_1 }
if (imm_bit_expression) { C_statement_1 } else { C_statement_2 }
switch (imm_int_expression) { C_statement }

These are valid immediate statements when they occur external to any C function. The controlling
expression in each case must be an immediate expression. The controlling expressions in immediate
conditional if else or switch statements are synchronized by a clock. The default clock is iClock,
when no specific clock is coded (as in the above examples). Other clocks or timers may be specified
as explained in section 4. In all cases any change in the controlling immediate expression,
synchronized by the controlling clock, triggers execution of the C statements.

2.7.1 Immediate conditional statement if else
immediate conditional statements use the keyword if and optionally else. The controlling expression
for an immediate conditional statement is an immediate bit expression. If not, it is converted from int
to bit automatically. A LO to HI transition or rising edge causes C_statement_1 to be executed.
A HI to LO transition or falling edge causes C_statement_2 to be executed (if an else is coded).
The C_statements are embedded C compound statements, not immediate statements.

%{
int a, b, c; /* C declarations in a literal block */
void reset(void); /* C function declaration */
%}

imm bit sw1, sw2, sw3; // immediate declarations
imm clock cl; // use cl rather than iClock

if (sw1 & sw2 | sw3, cl) { /* imm controlling expression */
a = 1; b = 12; c = -2; /* C code executed on rising edge */

} else {
reset(); /* C code executed on falling edge */

}

2.7.2 Immediate switch statement
For the immediate switch statement, the controlling expression is an immediate int expression. The
C_statement is an embedded compound statement, which has the usual form of a C switch
statement with case labels. Any change in the controlling expression triggers the switch statement. The
value of that expression after the change is applied to the switch and the selected case is executed.

%{ enum Fuzzy { OFF, DIM, MEDIUM, BRIGHT }; %} // literal block
switch (brightness, cl) { // declared and assigned above

case OFF: lightVoltage(0); break;
case DIM: lightVoltage(10); break;
case MEDIUM: lightVoltage(18); break;
case BRIGHT: lightVoltage(24); break;
default: lightVoltage(24); break;

} // end of immediate switch statement

The immediate conditional if else and switch statements open the way to trigger the execution of short
C fragments on particular events. These events are either rising or falling edges of bit values or

13

changing numeric values. If more than a fragment of C code is involved, it is good practice to code this
in a C function, and to call that function in the immediate control statement. Long blocks of C code
would make the purpose of those statements unclear. Depending on the time critical nature of the
application, C code should not take too long to execute, because during the execution of such C
fragments the processing of other immediate events is held up. Consider forking blocks of C code.

2.8 Literal blocks
Literal blocks are sections of C code enclosed in special braces %{ and %}. They may occur before,
between and after any immediate statements. Literal blocks are copied verbatim to the front of the
generated C output code (without the special braces). Literal blocks are useful to declare any C
variables, define macros and to declare and define auxiliary C functions to support the application.
Since iC Version 3 any C-pre-processor commands such as #include, #define or #ifdef etc in a
literal block are written in standard C form. They used to be %#include etc, which has been dropped.
C-pre-processor commands for the iC sections of code are %include, %define or %ifdef etc.
These are resolved before the iC compilation. They used to be #include etc before Version 3.

%{
#include <math.h> /* standard C-pre-processor syntax */
int x, y, z; /* declarations in a literal block */
int abs(int); /* C function declaration */
%}

The run-time system will call the function iCbegin() when an iC application is started before any
immediate processing. This function can be provided by the user in a literal block. If it is not provided,
an empty function iCbegin() returning 0 is provided by the system. User implementations should
return 1. One use of iCbegin() is to initialise immC variables. It may even contain a fork() call to
spawn a child process, which will run in parallel with normal immediate processing. This opens up the
way to build mixed applications using conventional multi-process or multi-threaded control strategies in
parallel with immediate C code, which leaves a lot of CPU time to do other things.

The complementary function iCend() is called by the run-time system when an iC application is
terminated externally (iC applications never terminate by themselves, unless iC_quit() is called in
embedded C code). iCend() could be used to free memory allocated with malloc or new.

%{
int iCbegin() { ...; return 1; } /* optional C initialisation */
int iCend() { ...; return 1; } /* optional C termination */
%}

If the code in literal blocks, or code in C blocks controlled by an immediate if else or switch, is
specifically C++ code, then the generated code must be compiled by a C++ compiler. The use of C++
has not been tested and is deprecated. The Code generated from the iC statements is pure C code.

2.9 Comments
C style comments /* ... */ can be used anywhere between tokens of iC programs.
C++ style comments may be used at the end of iC lines. // ...

Some older C compilers do not support C++ comments, so their use in literal blocks and C statement
blocks controlled by if else or switch may lead to portability problems.

2.10 Scope of immediate statements
Immediate variables are global or static and must be declared external to all C functions like other
global variables in C. Moreover all immediate statements must also be placed external to C functions.
A statement in a C function is only executed (made active) during the execution of that function.
Immediate statements are active at all times. Immediate statements in a Function Block definition are a
template, which is cloned, every time the Function Block is used (not called). See section 6 .

Consecutive immediate statements are not executed in sequence. Each immediate statement is
independent of all other immediate statements. They can be placed in any order, without influencing
the behaviour of the program. This is analogous to the placement of global variables and their
initialisation expressions as well as the placement of functions in C.

Immediate assignments are often combined with their declarations and look like the initialization
expressions of ordinary global C variables. In C, this initialization takes place before the function
main() is started. In iC immediate statements simply stay active until the program is stopped. For most
of the time the process running the iC program waits in a select(2) call, which wakes up whenever
an external input or internal timer changes, causing an interrupt. Because the processing required to

14

react to such an input is in the order of microseconds, this strategy ensures that the CPU loading of an
iC process is minimal. This can be observed easily with tools like xosview under Linux. Times
measured with a modern 1.8 GHz processor were < 50 us, which is mostly overhead to get the input
process scheduled. The time to execute a chain of 15 consecutive events is of the order of 5 us. This
corresponds to a 0.05% loading for a process in which a chain of immediate actions is triggered by a
100 ms timer, of which 0.005% is actually used by the immediate statements. This is minimal loading
of the processor. Even while debugging with a live display, the loading is only about 10% for a process
executing 15 events every 100 ms.

2.11 Simple Example
The following very simple program has 4 external bit inputs and 4 external bit outputs controlling a
Water Heater, so that its vessel will always be filled with hot water when it is switched on. Once water
is drained from the vessel it will immediately fill with cold water and then heat it to the pre-set
temperature, which is indicated by a ready light. (A lot of aliases are used to make debugging easier)

/* WATER HEATER PROGRAM */
imm bit on = IX0.0; // switch to turn system on/off
imm bit waterLo = IX0.1; // water level, turns off when full
imm bit tempLo = IX0.2; // thermostat, turns off when hot
imm bit drain = IX0.3; // causes the vessel to drain
imm bit fill = on & waterLo; // fill with water until full
imm bit heat = on & ~waterLo & tempLo; // heat when full until hot
imm bit ready = on & ~tempLo; // hot water ready light
QX0.0 = fill; QX0.1 = heat;
QX0.2 = ready; QX0.3 = drain;

2.12 Intrinsic limitations of immediate statements
Arrays of immediate variables have been realized and will be covered in section 7. Structures
containing immediate variables have not been realized in the current release, although they are
possible and may be implemented in a future release. Pointers to immediate variables in immediate
expressions are semantically indeterminate. They are therefore not implemented. This is also pointed
out in one of the recommendations in the IEC-1131 standard, which justifies the language Structured
Text instead of C on the grounds, that a pointer in a machine control program has no meaning and
could cause disaster. The same limitation has been recognized in the language Java, which only
recognizes references as constant pointers.

Immediate assignments, in which the left hand side variable appears in the right hand side expression
are of very doubtful utility. Such a statement expresses a very tight feedback loop, which will either
lock up, or generate a high speed oscillator. For this reason a warning message is generated by the iC
compiler.

imm bit a, b;
a = a & b; // a locks up when b becomes 0
b = ~b | a; // b oscillates when a is 0
imm int j;
j = j + 1; // j never catches up with itself

For the above reason the C assignment operators +=, -= etc. as well as ++ and -- cannot be used in
immediate statements. Feedback over several statements is allowed, but oscillations are controlled so
that the system does not become compute bound. If oscillations do occur, a runtime warning is
produced since they are probably not intended.

Like in any programming language, it is possible to write incorrect iC programs. It is the job of the
programmer, to understand the model on which the execution of the iC language constructs is based,
and to create programs that use these constructs correctly. iC is modelled on hardware building
blocks, which provides an easy starting point in understanding the model (section 8).

The following was probably intended by the last statement above:

imm bit gate, p;
immC int j; // j counts every rising edge
if (gate & p) { j++; } // of p, while gate is HI

In this example, gate & p is an immediate expression that triggers execution of the C statement
j++; Assignment operators +=, -= etc. as well as ++ and -- with immediate variables are normal in
embedded C statements. The above construct is one way to implement a counter in iC. Another way is
shown in section 3 .9 .

15

2.13 Pragmas
Pragmas affect the compilation phase of an iC program. Pragmas are introduced by the keywords use
and no.

use turns a pragma option on
no turns it off

Currently three pragmas are implemented in immediate C: alias, strict and list.

use alias; // equivalent to -A command line option
no alias; // turn alias option off

use strict; // equivalent to -S command line option - default
no strict; // turn strict option off

use list; // restore listing output from the next line - default
no list; // suppress listing output from the next line

1. The alias pragma or -A command line option forces the compiler to generate a node for each
alias in the generated C code (default is to generate no node). This is needed in two
circumstances:

• It is required, if an iC source refers to an alias in another iC source by an extern
reference. Since all references to aliases are normally removed from the compiled code,
the C object modules, which are generated from such code could not be linked. With the
use alias option, the code can be linked and the remaining aliases are resolved at start
up.

• The use alias option is also useful for debugging. Only when it is set, are alias names
displayed as active words by iClive.

2. The strict pragma or -S command line option (which is the default since Version 2) forces
the compiler to expect a declaration of all immediate variables, before it is used in an
expression or assigned. With no strict (deprecated), an imm bit variable is assumed for
any undeclared value variable. Similarly an assignment to an undeclared name from a
CLOCK() or TIMER() function call results in a default imm clock or imm timer variable.
Such laxness is OK for small single source projects, but can lead to problems with larger
projects. I had a case in a large project, where I had declared a number of imm int variables
and mistyped one of them, so the correct name was not declared. This name was then
assigned - but converted to imm bit and then back to imm int when used, leading to
incorrect arithmetic. As noted earlier, C functions and macros should be declared extern with
their correct parameter ramp and return value. When strict is active, error messages are
output if an undeclared C function or macro is called in an immediate C expression.

3. The no list pragma suppresses listing output from the next line until a use list statement
starts listing output again. Mainly used to suppress listings of function block definitions, which
may be regarded as clutter. Typical use:

no list; // %include “adconvert.ih”
%include “adconvert.ih”
use list;

Listing output is the no list line only. The comment is recommended, telling what will not be
listed, which is the whole of the file adconvert.ih and the use list line.

Several options may be turned on or off together in one pragma call: eg. use alias strict;

The scope of these pragmas is a file. If a pragma is enabled in one file it carries over to an included iC
header file. If on the other hand a pragma is changed in a header file, it reverts to its previous value in
the iC file after the #include statement, which includes the header file. This makes sure that sloppy iC
programs, which include a header file, which uses “strict” syntax, will not report errors, because
they do not follow the “strict” syntax. This scope feature can only be used successfully with the
strict and list pragmas, since use alias only comes into effect during C code generation – at
this point the complete source has been parsed. This means use alias should definitely be used
once in iC programs, which consists of several parts with extern references between them. Other
single source iC programs can use alias, which generates slightly larger code, but which can be
debugged without recompiling with the -A flag.

16

3 Built-in Functions

iC has a number of built-in functions, which are so central to the operation of the system, that they
have been made a part of the language. They are implemented as efficient building blocks in the
supporting run time package. All built-in functions are defined internally as pre compiled Function
Blocks. All except the LATCH and the FORCE functions are 'clocked', which is analogous to similar
functionality in hardware IC's. (parameter types shown are all immediate – the keyword imm is optional
for parameters in Function Block definitions and is left out in this description for clarity).

3.1 Unclocked flip-flop or LATCH
The unclocked R-S flip-flop is the LATCH function with the following calling sequence:

imm bit LATCH(bit set, bit reset);

The following truth table describes the LATCH function:

set reset LATCH(set,reset)

Q

0 0 Q

1 0 1

0 1 0

1 1 Q 2

The LATCH function is particularly fast and efficient, using only a single gate node. It is of course
possible to program a similar latch function with a pair of cross coupled OR gates. In iC this looks as
follows: imm bit set, reset, Q, Qbar;

Q = set & ~reset | ~Qbar;
Qbar = reset & ~set | ~Q; 3

The disadvantage of this implementation is the fact that four gate nodes are used and that its function
as a latch memory element is hidden. LATCH clearly shows its function.

3.2 FORCE function
Closely related to the LATCH function is the FORCE function with the following calling sequence and
truth table:

imm bit FORCE(bit arg1, bit on, bit off);

arg1 on off FORCE(arg1,on,off)

0 0 0 0

1 0 0 1

X 1 0 1

X 0 1 0

0 1 1 0

1 1 1 1

The FORCE function passes the value of arg1 to the output if both on and off are 0 (or both are 1). If
only on is 1 then the output is forced to 1, independent of the value of arg1. Conversely if only
off is 1 then the output is forced to 0. This function is useful for testing.

Note for deep thinkers: the following expression generates a LATCH function from a FORCE function.

(temp001 = FORCE(temp001, set, reset))

2 Note the memory behaviour of a LATCH when both set and reset is 1

3 Note for PLC programmers: the order of the set and reset statement has no influence on the output of flip-
flops and latches as it does in sequentially executed PLC programs - even in the case of this latch example
using four gates.

17

This is how a LATCH is generated by the iC compiler from the more fundamental FORCE function -
using feedback of its own output to hold that value at its input, unless the ‘on‘ or ‘off‘ inputs force the
output to a different value, which is then maintained.

3.3 Clocked D flip-flop
The simplest clocked flip-flop is the D flip-flop or delay memory element, a function having a single
logic input, a clock input and an output equal to the input in the previous clock period.

imm bit D(bit expr, clock c); or
imm bit D(bit expr); /* default iClock used as clock */

The following truth table describes the D flip-flop:

expr D(expr,c)

Dn Qn+1

0 0

1 1

The D flip-flop has become the most commonly used clocked flip-flop in hardware design. Its
application is called for, when several bit expressions must produce synchronized outputs, so that any
further logic done with these outputs does not suffer from timing races. A typical example is the
implementation of a state machine. The D flip-flop is also a 1 bit memory element, which can store
information from one clock period to the next. The D flip-flop is called for in any design where feedback
is involved. The use of the clocked D flip-flop in iC will probably fall into a similar pattern.

Examples of statements using D flip-flops is the generation of a pulse on the rising edge of an input and
of a pulse on a change of input.

imm bit input;
imm bit rise = input & ~D(input);
imm bit change = input ^ D(input);

The output rise goes HI when input goes HI and goes LO again when the output of the inverted D
flip-flop goes LO after the next (implicit) clock pulse. The second example uses the exclusive-or
operator ^ to generate a pulse on both the rising and falling edge of the input.

For all clocked built in functions, each parameter may have its own clock parameter. If a clock
parameter is supplied it applies to all parameters on its left, which do not have their own clock. If no
clock parameter is specified, the built in iClock is used.

3.4 Clocked SR flip-flop
The memory element that is represented in most PLC instruction sets is the R-S flip-flop. This flip-flop
has two logic inputs. The rising edge of the set input puts the flip-flop in the "one" state and the rising
edge of the reset input puts the flip-flop in the "zero" state. Many books on switching theory describe a
simple unclocked latch memory element by the name R-S flip-flop. Following the usage in IEC-1131,
and because the set parameter precedes the reset parameter in the calling sequence, the clocked Set-
Reset flip-flop was named SR flip-flop in iC:

imm bit SR(bit set, clock sc, bit reset, clock rc);

set reset SR(set,sc,reset,rc)

Sn Rn Qn+1

0 0 Qn

0/1 X 1

X 0/1 0

1 1 Qn

A version with one set input and two reset inputs is provided (mainly to implement the full SRT mono-
flop as a function block).

18

imm bit SRR(bit set, clock sc, bit reset1, clock rc1,
 bit reset2, clock rc2);

The SR flip-flop implemented in iC differs marginally from the classical R-S flip-flop described in the
literature, which has the disadvantage that Qn+1 is undefined for R and S both "one". The design rules
for the R-S flip flop state that R and S must never be "one" together. Since this would cause
unwarranted confusion the implementation with the above truth table was chosen, which gives identical
results with designs following the rules of the classical R-S flip-flop. If the rule of both inputs "one" is
ignored, the results are still easy to interpret. For the above reasons clocked R-S flip-flops are rare as
integrated circuits.

3.5 Clocked JK flip-flop
Instead JK flip-flops were made in hardware. They toggle their output on every clock pulse, when J and
K are both "one". In recent years even these have not been listed in the IC data books. A JK flip-flop
has been implemented in iC:

imm bit JK(bit set, bit reset, clock c);
equivalent to SR(set & ~Q, reset & Q, c);

set reset JK(set,sc,reset,rc)

Jn Kn Qn+1

0 0 Qn

1 0 1

0 1 0

1 1 ~Qn

3.6 Clocked SRX flip-flop
In practice the simple clocked SR flip-flop can be difficult to control under the following conditions:

A 0/1 set transition has occurred which sets the flip-flop and some time later a 0/1 reset transition
occurs which resets it, while set is still a 1. Even if reset goes back to 0, the set input is not active
again until it goes back to 0 and then to 1 again. This works well in many situations, but can be counter
intuitive. For this reason the SRX flip-flop or the JK flip-flop can be used more effectively.

imm bit SRX(bit set, clock sc, bit reset, clock rc);
 equivalent to SR(set & ~reset,sc, reset & ~set,rc);

set reset SRX(set,sc,reset,rc)

Sn Rn Qn+1

0 0 Qn

0/1 0 1

0 0/1 0

1 1 Qn

1\0 1 0

1 1\0 1

When both set and reset are 1, then both internal S and R inputs are 0. If there is a 1\0 transition on
either set or reset, then the alternate input has a 0/1 transition, which sets or resets Q.

3.7 D flip-flop with Set and Reset
D flip-flops may have an optional reset input. Another option is to have both a set and reset input as
well as the D input. The names of these variants indicate which parameters are required (clocks are
optional):

19

imm bit D(bit expr, clock c); /* simple D flip-flop */
imm bit DR(bit expr, clock c, bit res, clock rc);
imm bit DSR(bit expr, clock c, bit set, clock sc,

bit res, clock rc);

3.8 Mono-Flop ST(set, timer, delay) or SRT(set, reset, timer, delay)
The Mono-Flop, or ST() function is a modified SR flip-flop, in which the output is internally connected
back to a timed reset input. This internal reset is usually clocked by a TIMER, which is controlled by a
delay parameter. The delay parameter may have a fixed or variable numeric value. The ST mono-flop
output is reset, when the number of TIMER ticks corresponding to the value of "delay", from the
moment when the ST was set, has occurred.

imm bit ST(bit set, clock sc, timer tim, int delay); or
imm bit ST(bit set, clock sc, clock tc);

The SRT mono-flop has an additional reset parameter, which can reset the mono-flop prematurely. The
SRT mono-flop is based on the SRR flip flop, which has two reset inputs.

imm bit SRT(bit set, clock sc, bit res, clock rc, clock tc);

Instead of clocking with a delay TIMER, any clock may be used as the last parameter of the ST mono-
flop, which is then reset on the next clock pulse after it has been set. The last timer, delay or clock
must be specified – it may be iClock in which case a thin pulse is produced - one fundamental clock
period wide. Both set (and reset in the case of SRT) can have clock parameters – default is iClock if
none are provided.

3.9 Sample and Hold
This function is a direct analogy of the clocked D flip-flop for numeric values. The numeric output
equals the numeric input in the previous clock period.

imm int SH(int arithmeticValue, clock c);

The sample and hold function can be used to sample fast changing numeric inputs at a constant clock
rate. Other uses are the implementation of many useful constructs such as state machines, counters
and shift registers, to name a few.

imm int count = SH(count + 1, c); // count clock c pulses
// shift register with b as input in the least significant bit.
imm bit b; // b assigned somewhere else
imm int shift = SH((shift << 1) + b, c);

3.10 Sample and Hold with Set and Reset
The Sample and Hold function also comes with either reset or set and reset inputs. When the reset
input is clocked, the output is set to all 0's. By analogy when the set input is clocked the output is set to
all 1's. The inputs set and reset are imm bit expressions; whereas the first input
arithmeticValue and the output are imm int.

imm int SHR(int arithmeticValue, clock c, bit res, clock rc);
imm int SHSR(int arithmeticValue, clock c, bit set, clock sc,

bit res, clock rc);

3.11 Edge detectors
It is often useful to generate a pulse on the rising and/or falling edge of a logical signal or on a change
of numeric value. These pulses should turn off at the next clock. In connection with the D flip-flop,
expressions were shown which generate such pulses. Since these operations are quite important, the
following more efficient functions are implemented in iC.

imm bit RISE(bit expr, clock c); // pulse on rising edge
imm bit FALL(bit expr, clock c); // pulse on falling edge
imm bit CHANGE(bit expr, clock c); // pulse on both edges

The CHANGE function is also implemented for arithmetic expressions. The output is nevertheless of
type imm bit.

imm bit CHANGE(int arithExpr, clock c); // pulse on every change

20

The bit output pulses every time arithExpr changes, qualified by the clock c. The clock limits the
rate at which changes are recognized. This is often useful with numeric values, which may change at a
high rate, and a slower sampling rate is called for.

The pulse outputs of all edge detectors are just long enough, so that they catch the next clock pulse
after the edge, but only that one clock pulse – not more. When the output of an edge detector is used
directly or indirectly as input of another clocked function with the same clock, correct synchronization is
achieved. Edge detectors RISE, FALL and CHANGE are an important part of PLC instruction sets.

Note: there is a significant difference between the output of the RISE function and the output of the ST
mono-flop. The output of the RISE function turns on with the rising input signal and turns off again on
the next clock. The output of the mono-flop turns on with the next clock after the set signal and turns
off with the next clock after that, which is one clock pulse later, assuming the same clock is used for
set and internal reset. When the two clocks are different, which is usual for ST mono-flops, the case is
different again.

4 Clock Signals

There are two types of clock signal, 'imm clock' and 'imm timer'. It is important to realize that clock
signals are not of the same type as logic or numeric signals of type 'imm bit' or 'imm int'. Clock
signals are declared as follows:

imm clock myClock;
imm timer myTimer;

Under no circumstances may clocks be interconnected with logic or numeric signals. Any attempt to do
so generates an error message. Clock signals in iC are best thought of as timeless pulses, whose
occurrence marks the separation of one clock period from the next along the time axis. All clocked
functions in iC follow the Master-Slave principle. The Master element in a D flip-flop follows the input.
The output of this Master gate is transferred to the Slave element during the active phase of the next
clock pulse. The output of the Slave element is the output of the D flip-flop. All Master-Slave transfers
during one particular clock pulse are completed before more combinatorial bit or arithmetic expressions
are executed. This insures that the outputs of all functions, which are synchronized by the same clock,
change simultaneously as far as the input logic is concerned.

Clock signals can come from four different sources:

1. The built-in iClock, which is signal type imm clock

2. The CLOCK function, which generates type imm clock

3. The TIMER function, which generates type imm timer

4. The TIMER1 function, which also generates type imm timer

4.1 Built-in immediate clock
There is a built-in immediate clock with the name iClock. This clock runs at the highest system rate.
iClock is used as the default clock, when no other clock is specified. It may also be specified by the
name iClock when no default clock is allowed by the syntax of a function call.

x = SR(set, reset); // set and reset clocked by built-in iClock

y = SR(set, iClock, reset, rc); // clock for the set argument
// must be named if different
// from the reset clock rc

4.2 CLOCK function
The second source of clock signals is the CLOCK function, which has one or two logic inputs – each
with an optional clock input. The CLOCK function produces an output clock pulse during the active
phase of the input clock, which follows a LO to HI transition of one of the logic inputs. If no clock input
is specified, iClock is used. All CLOCK outputs are synchronous with their input clock.

21

imm clock CLOCK(bit in, clock c); or
imm clock CLOCK(bit in1, clock c1, bit in2, clock c2);

imm clock clk = CLOCK(b); // ‘clk‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit y = D(a, clk); // D flip-flop clocked by ‘clk’
imm clock cl2 = CLOCK(b,~b); // clock on rising and falling edge

// of b, both clocked by ‘iClock’

4.3 TIMER function
The third source of clock signals is the TIMER function, which also has one or two logic inputs – each
with an optional clock input. The output generated by the TIMER function are of signal type imm
timer and are generated in precisely the same way and at the same time as clock pulses from a
CLOCK function with the same inputs. timer pulses differ from clock pulses in the way they are used.
Input parameters of type timer are followed by an optional delay parameter, which may be a constant
value or an arithmetic expression (if missing a value of 1 is used). The current value of the delay
expression is read on the rising edge or change of the associated input, and the result n is used to
count timer pulses. The output is changed by the n'th timer pulse after the changing input. Use of a
clock rather than a timer changes the output of a function on the next clock after a change in
input. If the delay value n of a timer call is 0 - or on the falling edge of a logic input for a function other
than the SH, CHANGE or switch function - the output is changed immediately by the next iClock. For
a SH, CHANGE or switch function the input is usually arithmetic and those functions are timed on all
changes of input, even if they are a logic input, which is possible for the CHANGE function.

imm timer TIMER(bit in, clock c); or
imm timer TIMER(bit in1, clock c1, bit in2, clock c2);

imm timer tim = TIMER(b); // ‘tim‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit z = D(a, tim, 3);// D flip-flop clocked by ‘tim‘,
// turn on delayed by 3 ‘tim‘ pulses,
// immediate turn off clocked by ‘iClock‘

The following diagram shows the behaviour of a TIMER generated timer for different length's of input
'a' relative to the timer 'tim' pulses:

iClock

z

b

tim

a
tim 1 2 shortiClock offtim 1 2 3 tim 1 2 3

iClock

y

b

clk

a

iClock

y

b

clk

a

cl2

22

A D flip-flop clocked with a timer generates a function with turn on delay. If the logic input to such a
delay element turns off before the delay time is up, the output never turns on. This is a very useful
function to implement time-outs, which are notoriously difficult to implement by conventional means.

4.4 TIMER1 function
The fourth source of clock signals is the TIMER1 function, which is very similar to the normal TIMER
function. The signal type generated is imm timer – the same as the type generated by a normal
TIMER. The only difference is the way in which a 0 delay and the falling logic input is handled, when a
timer, generated by the TIMER1 function controls a clocked function. A 0 delay is handled like a
delay of 1 – turn on is at the next timer pulse. On the falling edge of the input the output is clocked on
the next timer pulse, rather than by the next iClock, which is the case for TIMER generated timer
signals unless the input is to an SH, CHANGE or switch function, in which case the falling edge is also
timed – just like for the TIMER function. A TIMER1 generated timer, used with a delay of 1 (or 0),
functions identically to a CLOCK generated clock signal, except there is a small, but significant
amount of overhead in handling timer signals. For this reason CLOCK functions are to be preferred –
their use is very fast.

imm timer TIMER1(bit in, clock c); or
imm timer TIMER1(bit in1, clock c1, bit in2, clock c2);

imm timer ti1 = TIMER1(b); // ‘ti1‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit z1 = D(a, ti1, 3);// D flip-flop clocked by ‘ti1‘,
// turn on delayed by 3 ‘ti1‘ pulses,
// turn off clocked by next ‘ti1‘

The following diagram shows the different turn-off handling for a TIMER1 generated timer (in the
shaded area):

CLOCK, TIMER and TIMER1 functions have optional clock inputs, which may come from other CLOCK
or TIMER functions. All CLOCK, TIMER or TIMER1 outputs are synchronous with their input clock(s).
This absolute synchronisation is an important aspect of the robust performance of clocked immediate
C applications. The cascading of clocked functions allows the realization of many useful applications.

5 Inputs and Outputs

5.1 Built-in Inputs
There are a number of inputs, which have such universal significance, that they are implemented in the
run time system.

5.1.1 iClock
There is a built-in immediate clock with the name iClock. This clock runs at the highest system rate.
The name iClock is built-in and may be used as defined above in se ction 4 .1 .

iClock

z1

b

ti1

a
ti1 1 2 shortti1 offti1 1 2 3 ti1 1 2 3

23

Because secondary clocks either use iClock by default, or another clock that is eventually clocked by
iClock, all clocks (and timers) are synchronous with iClock. The execution of immediate logic is
triggered by some input, which causes evaluation of follow up statements, until no more changes
occur. iClock generates a clock pulse after every such burst of activity in the logic. iClock has the
same significance for immediate logic as the end of the program cycle in a conventional PLC. The
main difference is, that for a conventional PLC all statements are executed for each program cycle. For
immediate logic only the changes triggered by one or at most a few simultaneous inputs are executed
for each program cycle. This typically takes a few microseconds at most for a modern processor.
There are support tools which can measure and display this time in microseconds.

5.1.2 Timing and miscellaneous inputs
To allow programs to work with real time, the following timing inputs have been provided as internal
inputs in iC:

TX0.3 or T10ms // 10 ms, 5 ms on, 5 ms off
TX0.4 or T100ms // 100 ms, 50 ms on, 50 ms off
TX0.5 or T1sec // 1 second, 500 ms on, 500 ms off
TX0.6 or T10sec // 10 seconds, 5 seconds on, 5 seconds off
TX0.7 or T1min // 1 minute, 30 seconds on, 30 seconds off

These are imm bit inputs, not imm clock signals. They are mainly used to generate clocks or
timers, which are synchronous with real time. For example:

imm clock clk100ms = CLOCK(T100ms); // clock every 100 ms
imm timer tim500ms = TIMER(T1sec, ~T1sec); // timer every 500 ms

The following miscellaneous internal inputs will be discussed in later examples.

 TX0.0 or EOI // off during initialization, then always on
 TX0.1 or STDIN // notification of a line of standard input

The aliases T10ms, T100ms, T1sec, T10sec and T1min for the IEC-1131 names TX0.3 – TX0.7
as well as EOI, STDIN, for TX0.0, TX0.1 are compiler generated when those words are used in
expressions. LO is a compiler generated imm bit variable with no input and HI is generated as the
alias of ~LO. They are all keywords in the iC language and may not be declared a second time. Bit
constants LO and HI are provided to fill unneeded bit call parameters required by a function block.

The rising edge of EOI (end of initialisation) is guaranteed to be the first input to the system and can be
used for initializing user constructs. It starts LO and then is HI for the remainder of the program
(forever as far as applications are concerned)

Keyboard or other input received from standard input (stdin) causes an interrupt every time a line
terminated by a carriage return has been received. This interrupt causes STDIN to pulse HI for one
iClock period. The data from stdin is available in the global C array char iC_stdinBuf[].

5.2 External Inputs and Outputs
Input and Output names in iC follow the IEC-1131 standard. Inputs start with the letter I, outputs with
the letter Q. These are followed by a second letter, which defines the type of the input or output. X
defines a byte of 8 bit I/O variables. B defines a numerical byte I/O variable, W a 16 bit word I/O and L
a 32 bit long word I/O variable. The 2 capital letters are followed by a number, which defines the
address index of the variable in the I/O field. For bit I/O variables the address is followed by a full stop
and a number in the range 0 to 7, marking the bit address of the actual bit variable in the addressed I/O
byte. The maximum address index that can be used depends on the implementation of the driver and
the underlying hardware. Addresses in the I/O field may be used for bit, byte, word or long word I/O. If
all of these are in the same physical address space, care must be taken not to overlap different types
of I/O. For some drivers byte addresses for 16 and 32 bit word I/O variables must be on a 16 bit word
or a 32 bit long word boundary respectively. The iC compiler can generate warnings if I/O fields
overlap. In the default case, each size variable is assumed to be in its own address space and the
address of each variable is simply an index into each of these address spaces.

24

5.2.1 Digital inputs
IX0.0 bit 0 of input byte 0 - pre-declared as imm bit
IX0.1 bit 1 of input byte 0
IX0.2 bit 2 of input byte 0
IX0.3 bit 3 of input byte 0
IX0.4 bit 4 of input byte 0
IX0.5 bit 5 of input byte 0
IX0.6 bit 6 of input byte 0
IX0.7 bit 7 of input byte 0

IX1.0 bit 0 of input byte 1
IX1.1 bit 1 of input byte 1
IX1.2 bit 2 of input byte 1
IX1.3 bit 3 of input byte 1
IX1.4 bit 4 of input byte 1
IX1.5 bit 5 of input byte 1
IX1.6 bit 6 of input byte 1
IX1.7 bit 7 of input byte 1

IX2.0 bit 0 of input byte 2
IX2.1 bit 1 of input byte 2
...

5.2.2 Digital outputs
QX0.0 bit 0 of output byte 0 - pre-declared as imm bit
QX0.1 bit 1 of output byte 0
QX0.2 bit 2 of output byte 0
QX0.3 bit 3 of output byte 0
QX0.4 bit 4 of output byte 0
QX0.5 bit 5 of output byte 0
QX0.6 bit 6 of output byte 0
QX0.7 bit 7 of output byte 0

QX1.0 bit 0 of output byte 1
QX1.1 bit 1 of output byte 1
QX1.2 bit 2 of output byte 1
QX1.3 bit 3 of output byte 1
QX1.4 bit 4 of output byte 1
QX1.5 bit 5 of output byte 1
QX1.6 bit 6 of output byte 1
QX1.7 bit 7 of output byte 1

QX2.0 bit 0 of output byte 2
QX2.1 bit 1 of output byte 2
...

5.2.3 Analog inputs
IB3 input byte 3 - pre-declared as imm int (8 bit input)
IB4 input byte 4
IB5 input byte 5
IB6 input word 6
IB7 input byte 7

IW8 input word 8 (16 bit input)
IW10 input word 10
IW12 input word 12
IW14 input word 14

IL16 input long 16 (32 bit input)
IL20 input long 20
IL24 input long 24
IL28 input long 28
...

25

5.2.4 Analog outputs
QB3 output byte 3 - pre-declared as imm int (8 bit output)
QB4 output byte 4
QB5 output byte 5
QB6 output byte 6
QB7 output byte 7

QW8 output word 8 (16 bit output)
QW10 output word 10
QW12 output word 12
QW14 output word 14

QL16 output long 16 (32 bit output)
QL20 output long 20
QL24 output long 24
QL28 output long 28
...

The IEC-1131 names above define the physical addresses of
inputs and outputs in the I/O field. Standard practice for PLC
I/O electronics is to package I/O units in narrow plug in units,
which are labelled as shown on the right. The iCbox
simulated I/O widget emulates this scheme, showing the
relationship of physical addresses to their IEC-1131 names.

For more readable applications it is highly recommended, that
alternate descriptive names are defined for IEC-1131 input
and output names. This would normally be done in a table of
alias assignments at the start of an iC program. One
advantage of this scheme is, that if an input or output is
physically moved to another I/O pin, only 1 statement in the
source needs to be changed.

It was common practice at one factory automation company that I worked for in Australia to run large
bunches of unlabelled wires from plant switches and actuators to the PLC connection field. The only
identification was grey for inputs and brown for outputs as well as some other colours for analog inputs
and outputs. All these wires were randomly terminated at the PLC. The first action when
commissioning was to activate each switch in the plant and note which input came up at the
programming unit. Similarly for the outputs. Then an alias table was written into the program and from
then on everything worked according to the PLC program, which was written in terms of descriptive I/O
names. This procedure saved a large amount of time of tedious labelling, which also tends to be error
prone.

imm bit waterLo, motorOn, heaterOn;
imm int waterTemp, motorSpeed;

waterLo = IX1.3; // these statements define aliases
waterTemp = IB2; // which produce no run-time overhead

QX10.2 = motorOn; // here the IEC-1131 names are the
QX10.3 = heaterOn; // aliases, which is appropriate
QW8 = motorSpeed; // for outputs

IEC-1131 I/O variable names are pre-declared as immediate variables in iC program code and as
rvalues in C code, but they are not defined for assignment in embedded C code. IEC-1131 output
variables which are going to be assigned in C code must be declared with an immC bit or immC int
declaration in an iC code section.

iCbox

26

6 User defined immediate Function Blocks

User defined immediate functions are commonly called function blocks in the PLC world, because they
act more like functional blocks or templates rather than functions in the instruction flow sense, where a
function evaluates a sequence of instructions whenever it is called. An immediate Function Block is a
separate immediate subsystem with immediate parameters which are its inputs and outputs from other
section of the immediate system, optional internal immediate variables, which must be declared inside
the Function Block and an optional immediate return value, which may be used like any other
immediate value – in an expression – assigned to an immediate variable or used as an input parameter
in a built in function or function block call. Only standard IEC-1131 I/O variables may be used in a
Function Block without being declared, although they may only be used as inputs, since any
assignment to an I/O variable such as QX0.0 inside a Function Block would lead to a multiple
assignment, once the Function Block is used more than once. Another way to look at an immediate
Function Block is like a higher level or LSI integrated circuit, which has connections into the system
and provides a certain complex functionality with many internal components and connections.

6.1 immediate Function Block Definition
An immediate Function Block must be defined before it is used. Since the definition of a Function Block
does not itself generate any C Code on compilation it can be and usually is defined with its code body
in a header file, if multiple source files are used for a project. For small projects with a single source file
Function Blocks can be defined at the start of the source file.

immediate Function Block definitions are very similar to C functions, although there are significant
differences in detail. The definition of an immediate Function Block consists of a return value type, a
Function Block name, a comma separated parameter list in parentheses and a function body in curly
braces, e.g.

imm bit fall(bit f, clock c) { this = RISE(~f, c); }

The return value may be one of 5 types:

imm bit
imm int
imm clock
imm timer
imm void // which means no value is returned

The imm modifier is mandatory for the return type – it identifies an immediate Function Block Definition
syntactically. The Function Block name can be any valid name starting with a letter followed by any
number of alphanumeric characters or underscores. A leading underscore is possible, but should be
avoided. The name must be distinct from all other immediate variable names in a project. The
individual formal parameters in the parameter list must be of the following types:

imm bit // or simply bit // imm is implied
imm int // or int
imm clock // or clock
imm timer // or timer
const int // call parameter must be a constant expression

It is also possible to specify immC bit and immC int Arrays in the formal parameter list as follows:

immC bit bb[10] // or bit bb[10] // immC is implied
immC int aa[] // or int aa[] // size is optional

The imm modifier (or immC for arrays) is optional for parameters in a parameter list. The variable
declared is nevertheless immediate. Parameters may be either input value parameters, in which case
only their type is written in the list or the parameter may be an immediate output to which a value from
the Function Block is to be assigned. In this case the type of the parameter must be preceded by the
keyword assign.

assign imm bit // or assign bit

Array parameters cannot be assigned. If the size in square brackets is left out for an array parameter,
that position can be filled by an array of any size – there is one drawback – no indexed array
references to that array can be made in the iC code of the Function Block.

The body of a Function Block is one or more immediate statements defining the functionality of the
block encoded in curly braces. Immediate variables internal to the function must be declared before
use in the Function Block. Parameter names and internal variable names are in a separate name

27

space for each function block, which is also separate from the global name space. If a Function Block
is not imm void the body must contain a return statement. The semantics of the return statement is
the assignment to the variable to which the Function Block is assigned, when it is called. This variable,
which is identified by the keyword this, may be used in other expressions inside the Function Block.
The preferred way to write the return statements is:

this = some + immediate + expression; // preferred return syntax

The usual C syntax may also be used, but does not make the action as clear:

return some + immediate + expression; // deprecated earlier syntax

The return statement need not be the last statement in the Function Block definition – its position does
not influence when it is executed – that is controlled purely by changes in the values of the variables
making up the return statement – something which holds for all immediate statements. This situation is
more clearly expressed by the assignment to this. An imm void Function Block has no this
variable, may not contain a return statement and may not be assigned when called.

Each assign parameter must be on the left side of an assignment statement in the Function Block.
The values of assign parameters may be used inside the Function Block. Each variable declared
inside the Function Block must also be assigned in the Function Block. Variables declared extern
outside or inside the Function Block may not be assigned to inside the Function Block. As is the case
with I/O variables (which are implicitly extern). extern variables may only be used as values inside
the Function Block. They may not be declared again as local inside the Function Block. Variables
declared extern in a Function Block may be declared after the definition of the Function Block in the
iC code following the definition. This declares that the variable will be assigned in this module. A
variable with the same name as an extern variable may be declared locally in another Function
Block, but it is a different formal variable local to that Function Block.

All immediate statement types – assignments, if else, switch, Built in Function calls and previously user
defined Function Block calls may be used in Function Block definitions. Function Blocks may be nested
to any depth as long as Function Blocks are used, which have previously been fully defined. This
implies that Function Blocks cannot be called recursively, either directly or indirectly. Function Blocks
may be very simple one line definitions or complex systems with hundreds of parameters. Several
examples follow:

The SRX flip-flop is built into the compiler, but defined in just this way during initialisation of the
compiler. Since Version 2 of the compiler, all built in functions are defined as Function Blocks.

/* SRX flip-flop defined as a function block */

imm bit srx(imm bit set, imm clock scl,
imm bit res, imm clock rcl)

{
this = SR(set & ~res, scl, res & ~set, rcl);

}

The CountClk function adds 'increment' to 'this' for every occurrence of 'clk':

imm int CountClk(imm clock clk, imm int increment)
{

this = SH(this + increment, clk);
}

The CountBit function adds 'increment' to 'this' for every rising edge of 'step':

imm int CountBit(imm bit step, imm int increment)
{

this = CountClk(CLOCK(step), increment); // nested call
}

The SelectClk function selects either a 100 ms or a 1 second clock with variable 'second':

imm clock SelectClk(imm bit second)
{

this = CLOCK(TX0.4 & ~second | // 100 ms
TX0.5 & second); // 1 second

}

The following function block ADConvert assigns the conversion of int val to 8 assign bit
variables b0 to b7 passed as parameters (imm is implied for value and assign parameters).

28

/* Analog to digital conversion of a byte value */
imm void ADConvert(int val, // input parameter

assign bit b0, // output parameters
assign bit b1,
assign bit b2,
assign bit b3,
assign bit b4,
assign bit b5,
assign bit b6,
assign bit b7,

)
{

b0 = val & (1 << 0); // assignments to outputs
b1 = val & (1 << 1);
b2 = val & (1 << 2);
b3 = val & (1 << 3);
b4 = val & (1 << 4);
b5 = val & (1 << 5);
b6 = val & (1 << 6);
b7 = val & (1 << 7);

}

Note: the parameter list may have a trailing comma before the closing parentheses. This is generally
the case for comma separated lists in iC and makes it easier to edit the lists and copy parameters
when written vertically, which is useful for large parameter lists.

The iC compiler builds a template of the Function Block, replacing each parameter and internally
declared variable by the name of the Function Block followed by a '@' and the formal parameter or
declared variable name. This strategy ensures a private name space for each Function Block. When
called, the template is copied, with each formal parameter replaced by its real parameter and internally
declared variables replaced by the formal name with the '@' replaced by an underscore '_' followed by
an instance number and another underscore. The instance number scheme ensures that there is no
clash of compiler generated variable names (even for separately compiled modules).

6.2 immediate Function Block Call
An immediate Function Block is called in a similar fashion to a C function, again with some significant
differences. In practice immediate Function Blocks are not called. When the compiler encounters a
Function Block call, the pre-compiled Function Block, which is a template, is cloned, with all calling
parameters and internal variables replacing the formal parameters and formal internal variables in the
template. The resulting network of individual nodes associated with the call will then be used at run-
time like the network of nodes generated from all other immediate statements.

If an imm void function is encountered it looks like a subroutine call:

ADConvert(IB1,
 QX0.0, QX0.1, QX0.2, QX0.3,
 QX0.4, QX0.5, QX0.6, QX0.7,
);

This statement will assign bits 0 to 7 of IB1 to QX0.0 to QX0.7 whenever IB1 changes.

A Function Block with a return value must either be assigned to a suitable variable or else it must be
used as a value of a suitable type in an expression or in a parameter list. An imm bit Function Block
may be used as an imm int value and vice versa – appropriate conversion takes place. imm clock
and imm timer Function Blocks can either be assigned to correctly declared clock or timer
variables or else used as a clock or timer value in a parameter list.

/* count every rise of IX1.0 */
imm int count = CountBit(IX1.0, 1);

/* selects 1 sec when IX1.7 is on else 100 ms */
imm clock clk = SelectClk(IX1.7);

Real parameters of type imm int and imm bit may be mismatched with their formal parameter
types – value and assign parameters in the call will be forced to their formal type. assign parameters
of type imm clock and imm timer must match – so must a value parameter of type imm timer.
Real immC Array parameters are only the name of a previously declared immC Array of the same type
as the formal parameter. The size must also match unless the formal parameter did not specify a size.

29

The handling of formal imm clock parameters is more complex, allowing the use of default clocks.
Positions for formal imm clock parameters which do not immediately follow another formal clock
parameter are handled as follows:

1. The position may be filled by a real imm clock parameter.

2. The position may be filled by a real imm timer parameter followed by an optional imm int delay
(if delay is left out it will be set to 1).

3. The position may be left out altogether, in which case the next clock or timer parameter on the right
separated by at least one non clock parameter will be replicated for the position. If there is no real
clock parameter following on the right, iClock will be used.

On the other hand the second of two consecutive formal clock parameters must be matched by a real
clock or by a real timer parameter optionally followed by an imm int delay parameter. If the first of the
formal clock pair is not matched by a real clock or timer parameter, it and all unmatched formal clock
parameters to the left will be set to iClock.

These rules for optional clock parameters are the same as for the clocked built-in functions D, SR, SRR,
SH, SHR, SHSR, RISE, CHANGE, CLOCK, TIMER and TIMER1 as well as for the if and switch
statements.

Real timer parameters for formal timer parameters cannot be extended by a delay – the delay used
is determined in the Function Block with delay(s) associated with the use of the formal timer
parameter in the code of the Function Block.

Formal parameters of type const int must be filled by a constant value or constant expression when
called. const int parameters can be used in Function Blocks as initialiser values for immC variables
and index values for immC array members, which must be constants. They can also be used as timer
delay values and generally in immediate arithmetic expressions.

The following are calls of the SRX() Function Block with two formal clock parameters – one each for
set and reset and the ST() function block with two consecutive formal clock parameters – one optional
for set and the second a non optional delayed self reset timer or clock.

imm clock clk0 = CLOCK(IX1.0), clk1 = CLOCK(IX1.1);
imm timer t = TIMER(IX1.2);
imm bit s, r;
imm bit m1 = SRX(s, clk0, r, clk1); // uses individual clocks
imm bit m2 = SRX(s, t, 3, r, t, 5); // individual timer delays
imm bit m3 = SRX(s, r, clk1); // same clock for s and r
imm bit m4 = SRX(s, r, t, 5); // one timer for s and r
imm bit m5 = SRX(s, clk0, r) // default iClock for r
imm bit m6 = SRX(s, iClock, r, clk1); // must specify iClock here
imm bit m7 = SRX(s, r); // default iClock for both

imm bit m8 = ST(s, clk0, t, 5); // t is not optional
// because it fills 2nd formal clock

imm bit m9 = ST(s, t, 5); // iClock for s - t is not optional

30

7 Arrays

Arrays in conventional instruction flow languages are a named collection (often of fixed length) of
similar variables, which are accessed by an index expression, eg a[5]. Each such entity is an individual
object, but in instruction flow languages the index is often a variable, which is manipulated in a loop
and references to the individual indexed entities occur sequentially, as in the following C example:

for (n = 0; n < 4; n++) {
a[n] = b[n] * c[n];

}

7.1 Immediate Arrays
In data flow languages like immediate C loops at run-time are meaningless. Each immediate variable is
an entity, which is controlled by one assignment statement. The variable changes, when a variable in
the expression of the controlling statement changes and not when some loop runs. It is well to
remember, that immediate variables and their controlling expressions are more like IC building blocks
connected in a static network. In that sense immediate Arrays are like hardware registers containing a
number of hardware objects, which act out their individual function inside the hardware IC register.

Arrays may be defined in immediate C, but each entity acts individually at run-time, which means that
an individual immediate object must be generated for each immediate array member.

7.2 Use of immediate Arrays
Arrays in conventional languages as well as in immediate C give programmers extra capabilities to
express themselves. These fall into two distinct categories:

1. Arrays allow the writing of repeated similar statements as one statement – this saves a lot of
writing, but could also be done without arrays.

2. Additionally arrays allow the parametrisation of the array length, both within the program
source and in the command line of the compiler, which is probably more important. For
immediate C, this makes possible the writing of control programs in which the number of
control elements or groups is variable and the actual number is not bound until compile time.
This would not be possible without arrays in the language.

3. Arrays are also useful to select another variable in one indexing operation. If the index is itself
a variable, this sort of operation can only be done in embedded C code in immediate C using
immC variables whose changes can act back in normal iC code. To allow this sort of fast
access, immC Arrays have been implemented in iC – they are discussed at the end of this
chapter in section 7 .6 . Note: immC arrays are not part of the extended iCa language.

4. The definition of dynamic arrays, whose sizes change at run-time is meaningless for a data
flow language and is not possible in immediate C.

An example of the usefulness of arrays in the language would be an iC program controlling lifts in a
building. The number of floors varies from building to building – so do the number of parallel lifts, which
may be required. With arrays, a single iC program can be written, which can be compiled for a different
number of floors and a different number of parallel lifts as follows:

immac -P FLOORS=12 -P LIFTS=2 liftControl.ica

7.3 Implementation of immediate Arrays
Since each immediate array member is an individual immediate object at run time, it is important for
debugging with iClive to be able to have a listing showing each individual array member – not just its
collective form, eg a[N]. To achieve this, an iC program containing arrays is translated by the pre-
processor immac to iC code without arrays. This is a simple text operation in which macros are
expanded, loops are unrolled and index expressions are evaluated.

The iC language with arrays has four additional language extensions:

1. C or Perl-style 'FOR loops', which define a loop variable and a range.

2. C or Perl-style 'IF', 'ELSE IF' and 'ELSE' statements ('ELSIF' is a synonym for 'ELSE IF')

3. Index expressions in square brackets, which allow the definition of array variables – usually in
a loop.

4. Macro definitions, which are processed directly by immac - can be defined in two ways:

31

● in C-pre-processor style with %%define instead of #define, eg
%%define FLOORS 12

● in the command line, just like for a C compiler, eg
-P FLOORS=12

Macros will mostly be used inside the square brackets of an array variable or in the control line
of a 'FOR loop', but they can be used anywhere in the iC code or in the definition of another
%%define macro – macros may be nested. The above implies, that the immac pre-compiler
could be used as a macro pre-processor for iC programs without any arrays at all.

Note: immC Arrays are part of iC and are not handled by the immac pre-compiler.

iC programs containing the above four extensions are called iCa programs and should be written in a
file with the extension .ica – the immac pre-compiler translates an iCa program to an iC program with
the extension .ic in which macros and 'FOR loops' are expanded and immediate array instances are
converted to simple immediate variables. The following iCa snippet in file lift.ica

%%define FLOORS 4

FOR (N = 0; N < FLOORS; N++) {{
imm bit liftTo[N] = up[N] | down[N];

}}

expands to the following iC file lift.ic when compiled by immac:

imm bit liftTo0 = up0 | down0;
imm bit liftTo1 = up1 | down1;
imm bit liftTo2 = up2 | down2;
imm bit liftTo3 = up3 | down3;

The 'FOR loop' is executed at compile time and generates repeated copies of the statement(s) in the
compound statement controlled by the loop. This only makes sense, if there are elements in the loop
statement(s), which are modified by index operations using the control variable of the 'FOR statement' –
in the above example that is the variable N.

The translation of indices in square brackets is carried out in two steps:

1. The expression in square brackets is evaluated as an integer expression.

2. The numerical value produced replaces the square brackets and the expression it contains.

In the above example the index expressions are simply the variable N. But the index expressions can
be more complex. A feature of iCa indexing may seem strange at first, but it turns out to be very useful;
the square bracketed index expression may be placed anywhere in a word, not only at the end of a
word. It may even be placed on its own – in that case the expression is evaluated and becomes a
suitably modified integer constant in an iC statement. The following example shows both:

FOR (N = 0; N < 7; N++) {{
QB[N] = IB[N+1] * [N+2];
QX[N/8].[N%8] = IX[N/8].[N%8] & IX[10+(N/8)].[N%8]; // out: [N]

}}

expands to :

QB0 = IB1 * 2;
QX0.0 = IX0.0 & IX10.0; // out: 0
QB1 = IB2 * 3;
QX0.1 = IX0.1 & IX10.1; // out: 1
QB2 = IB3 * 4;
QX0.2 = IX0.2 & IX10.2; // out: 2
QB3 = IB4 * 5;
QX0.3 = IX0.3 & IX10.3; // out: 3
QB4 = IB5 * 6;
QX0.4 = IX0.4 & IX10.4; // out: 4
QB5 = IB6 * 7;
QX0.5 = IX0.5 & IX10.5; // out: 5
QB6 = IB7 * 8;
QX0.6 = IX0.6 & IX10.6; // out: 6

As shown above, index expressions may even be used in comments. This can be useful, because the
expanded iC text must later be used for debugging with iClive – the original text with 'FOR loops' and
index expressions is not meaningful for following the values of actual nodes at run-time. The above

32

example already gives a hint of how much writing can be saved. The way I/O bit variables following the
IEC-1131 standard are expanded is particularly useful.

The iCa extensions to the iC language can be embedded as additional lines in regular iC code. A
%%define macro definition may not be embedded in the middle of a line of iC code – not even between
iC statements, which have been written in one line. This limitation is similar to the limitations imposed
by the C pre-processor cpp on the C language.

7.3.1 FOR loops
'FOR loops' follow the syntax of C 'for statements' with the difference, that the word FOR is upper
case (to avoid clashes with 'for statements' in embedded C code) and the controlled iC code must be
enclosed in twin braces (single braces are required for immediate switch and if else statements as
well as for function block bodies):

FOR (expr1; expr2; expr3) {{
iC code, which is repeated under control of the loop
or nested 'FOR loops'

}}

The only restrictions are:

1. Each 'FOR statement' must define one (and only one) control variable, which is an int by
default:

FOR (N = 0; N < 10; N++) or FOR (int N = 0; N < 10; N++)

The control variable is the first 'word' of expr1, which is not 'int' i.e. N in the example. The
word 'int' in the second form is optional and can be written to remind programmers, that the
control variable is an integer. The control variable cannot be declared anywhere else.

2. Other atoms in the three expressions must be either constant expressions or expressions
which contain control variables of the current and/or outer 'FOR loops'. All expressions may
contain macros, which must expand to integer constants, strings or expressions containing
valid 'FOR' loop control variables. Under no circumstances may immediate variables be used in
these expressions.

3. The names of control variables must be different from any immediate variable. It is highly
recommended, that upper case names be used for 'FOR loop' control variables. This and the
upper case keyword 'FOR' and the twin braces {{ }} make these code generating
statements in the iCa language stand out from normal iC and C code.

4. The scope of the control variable of a 'FOR loop' begins when the control variable is initialised
in the 'FOR statement' and ends with the final matching twin braces. The control variable is not
valid outside of this scope. 'FOR loop' control variables will never appear in the generated iC
files (except as comments if the immac -a option is used).

Since immac is implemented as a Perl script, an alternate Perl type of 'FOR loop' using a list in various
forms may also be used.

FOR N (<Perl type list>) {{
iC code, which is repeated under control of the loop
or nested 'FOR loops'

}}

Similar restrictions to those above apply. The variable after the 'FOR' is the loop control variable. It may
optionally be preceded by the word 'int'. The control variable is given each value of the 'Perl type list'
for each iteration of the loop. Some powerful manipulations are possible with this form. Although a
perlish syntax is used in the second form of the FOR control statement, any variables in either form
follow the C syntax for scalar variables – they are never preceded by a $ as in Perl.

FOR int N (0 .. 3) {{ a[N], }}

internally generates the following Perl code (see optional .log file)

$out = “”; for my $N (0 .. 3) {$out .= “ a@{[$N]},”;} print $out;

which is executed as an eval to generate the following output:

a0, a1, a2, a3,

iC code embedded in twin braces is repeated without a LF, if the final braces are on the same line as
the iC code. The same can be achieved by terminating an iC code line with a back slash '\', which
works as follows:

33

FOR int N (0 .. 3) {{
a[N],\

}}

generates the same as above.

Lists in the second form of the 'FOR loop' may be made up of decimal numbers or strings. Strings may
be embedded in parentheses although lists of bare words will also be interpreted as strings.

imm int FOR N ("in", "out", "tmp") {{ fast_[N], }};

generates

imm int fast_in, fast_out, fast_tmp,;

The above iC declaration would have produced a syntax error until recently. The iC language has been
extended to allow such comma separated lists to have a final comma before the semi-colon to end the
statement. This is in line with other comma separated parameter lists, which may also have an extra
comma at the end.

Again the same can be achieved with backslashes. The following (with barewords in the list) generates
the same output as above, although this iCa snippet is not nearly as readable:

imm int\
FOR N (in, out, tmp) {{
 fast_[N],\
}}\
;

As shown above, lines terminated by a back-slash (\) are output without starting a new line – this make
it possible to generate lists in a single line. This applies both inside a 'FOR loop' and directly before and
after a 'FOR loop'. The end of the 'FOR loop' would normally terminate such a generated list, unless the
final brace of the 'FOR loop' is also followed by a back-slash (\) as shown in the generated function
block call statement in the last example above.

For those who don't like to see a comma followed by a semicolon ' ,;' at the end of a declaration, a
special characteristic of iCa index expressions can be used (see next paragraph). The value in square
brackets may be strings as well as numbers, since they are actually generated by Perl code. To
generate a variable length – single line – declaration, use the following:

imm bit FOR N (0 .. 5) {{ a[N][N < 5 ? "," : ";"] }}

generates

imm bit a0, a1, a2, a3, a4, a5;

Each execution of the second conditional index expression [N < 5 ? "," : ";"] in the loop
generates a single comma, which is appended – the last execution of the index expression generates a
semi colon.

The 'FOR statements' for both types of 'FOR loop' and the the associated twin braces are not copied to
the target except as comment lines, if the -a option is active for the immac compiler.

7.3.2 IF ELSE control statements
Sometimes it is necessary to suppress the output of code lines in a 'FOR loop' or to supply one or
more alternative output lines depending on some condition of the existing loop variables. This can be
achieved with an 'IF' or 'IF ELSE' control statement. The syntax and semantics is identical to C
'if' or 'if else' statements – except that again the 'IF' and 'ELSE' keywords are upper-case not
lower-case. Even one or more 'ELSE IF' statements may follow an initial 'IF' statement followed by
a final (optional)'ELSE' statement. ('ELSE IF' may be written as 'ELSIF' – it is translated to this
form anyway to execute as Perl code). The 'IF' conditional expression in parentheses may only
contain existing 'FOR loop' control variables and constants. No new control variable can be defined.
Again immediate variables may not be used in these expressions.The iC or C code controlled by an
'IF', 'ELSE IF' or 'ELSE' statement must be contained in twin braces (like the 'FOR loop'). The
following generates the same as example above:

imm bit FOR N (0..5) {{ IF (N < 5){{ a[N], }} ELSE {{ a[N]; }} }}

7.3.3 Index expressions
Index expressions are expressions in square brackets usually involving loop control variables and
integer constants. Unlike in other computer languages these 'index' expressions can be placed
anywhere in the iC code – not just as an index of an array variable. immediate array variables cannot

34

even be declared directly – they come into existence as simple immediate variables by evaluating the
index expression and replacing the square brackets by the numeric or string result of that evaluation.
The underlying simple immediate variables must of course be declared (unless not strict (which
you wouldn't, would you)). Such a group declaration is best done as follows:

FOR (N = 0; N < 10; N++) {{
imm bit a[N];

}}

Normally the square brackets are placed after a name, which then makes the array variables look like
those in C. But there are special cases where the square bracketed index expression is placed
somewhere else, as we saw in the earlier examples (computing IEC-1131 I/O variable names).

The semantics of index expressions is, that the expression in square brackets is evaluated during the
execution of the immac compiler (written in Perl) as a Perl eval. The numerical or string result of the
eval replaces the square brackets and the expression they enclose. When the index expression is a
simple array reference, this generates a name followed by a number. The fact that evaluation of the
index expressions is done by Perl means, that the expression syntax and semantics of Perl integer
arithmetic apply, since use int is declared in the immac compiler. Since most arithmetic operators
are the same for Perl and C, this is not of great consequence. One notable exception is the Perl
exponentiation operator **, which may be used in FOR loops and index expressions with good effect:

FOR (J = 0; 2**J < 16; J++) {{
imm int mask[J] = [2**J];

}}

generates

imm int mask0 = 1;
imm int mask1 = 2;
imm int mask2 = 4;
imm int mask3 = 8;

Any iC or C code may have strings which contain the backslashed characters '\n' or '\t', which stand for
a Newline or a Horizontal tab both in C or in Perl and also in iC. These special characters do not
actually execute as a Newline or a Tab until the final machine code executes.

FOR (I = 0; I < 4; I++) {{
printf(“Hello world\t%d\n”, [I]);

}}

generates

printf(“Hello world\t%d\n”, 0);
printf(“Hello world\t%d\n”, 1);
printf(“Hello world\t%d\n”, 2);
printf(“Hello world\t%d\n”, 3);

Not brilliant code but notice that '\t' and '\n' are correctly preserved in the generated iC code strings.

An exception to this rule are '\n' and '\t' characters contained in string expressions of an iCa index
expression in square brackets. These '\n' and '\t' characters are converted to a Newline or Tab directly
in the conversion from iCa to iC code. This allows the embedding of real Newlines or Tabs in lists of iC
code generated by a FOR loop.

imm int trans = \
FOR (I = 0; I < 16; I++) {{

IX[I/8].[I%8][I==16-1?”;”:I%4==3?” |\n\t\t”:” | “]\
}} // | NL TAB TAB after each group of 4 generates:

imm bit trans = IX0.0 | IX0.1 | IX0.2 | IX0.3 | NL
 TAB TAB = IX0.4 | IX0.5 | IX0.6 | IX0.7 | NL
 TAB TAB = IX1.0 | IX1.1 | IX1.2 | IX1.3 | NL
 TAB TAB = IX1.4 | IX1.5 | IX1.6 | IX1.7;

Normally index expressions occur in iC code in a 'FOR loop'. I deliberately say iC code and not iC
statements, because 'FOR loops' are used not only to generate lists of statements, but also lists of
parameters – both for the definition and the call of function blocks, whose parameter lists can be varied
at compile time. Another use is varying constant parameters. Inside a 'FOR loop' or a nest of 'FOR
loops', the iC code usually use the 'FOR loop' control variable(s) in the index expression(s) to make
each repeated iC code line different.

35

For index expressions in immediate C code outside of a 'FOR loop', the expression must be a constant
expression – no variables are allowed (remember no 'FOR loop' control variables are in scope anyway).
Nevertheless an iC variable, which must be used as an indexed array variable inside a 'FOR loop' looks
better if it follows the same syntax outside of the loop. The variable a[1] could of course be written as
a1 – this is the same immediate variable. But inside a loop it must be written as a[N] and only the
varying value of N will generate a0 a1 a2 etc.

Index expressions in embedded C code – either in a literal block or in a compound C statement
controlled by an immediate if else or switch statement may have index expressions, but they are
part of the C code and are not changed except index expressions, which contain an in-scope 'FOR
loop' control variable. This means that the translation of constant index expressions – as described in
the previous paragraph - are not carried out in embedded C code. In the rare instances where such a
translation is needed, it must be done manually – write a1 instead of a[1].

A special case in embedded C code occurs, if a numerical value generated by the control variable of a
'FOR loop' must be placed inside the square brackets of a C array reference. This can be done by
simply embedding the iCa index expression in the C index expression – eg:

if (IX0.0) {
int carray[3]; // start of embedded C code
FOR (N = 0; N < 3; N++) {{
carray[[N]] = icarray[N];
}}

}

generates

if (IX0.0) {
int carray[3]; // start of embedded C code
carray[0] = icarray0;
carray[1] = icarray1;
carray[2] = icarray2;

}

As can be seen in the above example, iCa 'FOR loops' may be embedded in C code – this is the
reason why the keyword 'FOR' was chosen instead of 'for' – the C code may also contain C 'for
statements'.

7.3.4 immediate Array syntax
To sum up, immediate arrays are not declared as such – variable names are used with index
expressions in square brackets. The programmer must be aware that this generates simple immediate
variables starting with the array name followed by a number. Such generated variable names cannot
be used anywhere else – this would show up as a multiple declaration during iC compilation. If we use
a one-dimensional array in an iCa program – eg sa, any array reference will simply have a number
appended to the array name in the generated iC code.

i = 2, sa[i] generates sa2
i = 22, sa[i+1] generates sa23

A special case are multi-dimensional arrays. If we use the standard C syntax to write a multi-
dimensional array reference, eg ma[i][j], and the immac pre-processor did not take special action,
we would get the following compile output for the following pairs of index values:

i = 2, j = 34 ma[i][j] would generate ma234 // NOT output
i = 23, j = 4 ma[i][j] would generate ma234 // NOT output

This would be unsatisfactory, because it is ambiguous – therefore immac inserts a letter x between
adjacent index expressions, producing the following output instead:

i = 2, j = 34 ma[i][j] generates ma2x34
i = 23, j = 4 ma[i][j] generates ma23x4

This is no longer ambiguous. Any multiple index is separated by an x, which is easily recognised in the
generated iC code as a member of a multiple-dimensional array – even the numerical index values can
be recognised easily in the generated names.

Both in C and by analogy in immediate C with arrays (iCa), array names and the index expressions in
square brackets (and of course the expressions in the square brackets) may be separated by spaces
and tab's – as follows:

36

i = 2, j = 34 ma [i] [j] still generates ma2x34
i = 23, j = 4 ma [i] [j] still generates ma23x4

One caveat applies for immac: such an array name with all its subsequent square bracketed index
expressions must be in the same line. (In C any sort of white space is allowed).

Another case where immac inserts an extra character are array names which finish with a numeral.
This could also lead to ambiguity if special action were not taken:

i = 2, sa9 [i] generates sa9y2
i = 22, sa9 [i+1] generates sa9y23

Although the way immac handles array names, which finish with a numeral avoids ambiguity, such
names should be avoided, because in the generated iC code they look too much like expanded array
names with an extra index, which could easily lead to clashes. To avoid this clash a y is inserted in this
case.

String index expressions in square brackets, which contain a string value in parentheses, eg

[N < MAX ? "," : ";"]

are not separated from an adjacent index expression by x or y.

In every case, the names generated from single- and multi-dimensional array references are
well formed iC variables, which show their name and index value(s). The main thing to remember
with array references is, that every array reference translates to a simple iC variable name, which
shows up in the generated iC code, which will normally be a lot longer than the iCa code, but which
must be used for live debugging with iClive. The mental translation between indexed array references
and the resolved iC names is so simple, that it should not cause any problems to the user.

7.4 immac Macro facility
The pre-compiler immac provides a full macro facility very similar to that provided by the C pre-
processor cpp. Object like macros without parameters as well as function like macros with parameters
in parentheses are supported. The keyword to introduce an immac macro definition is %%define not
#define; that is reserved for cpp or immac -m. The latter is an alternative to cpp and is used in
conjunction with the full iC compiler immcc to resolve C type macro's in embedded C code fragments.

%%define LENGTH 4

The same macro term LENGTH could also be pre-defined in the command line with the -P option:

immac -P LENGTH=8

Unlike cpp, the definition in the command line has precedence over the definition with a %%define line
in the program. This allows iCa programs to define default values for macro terms, which can be re-
defined in the command line. It is an error to %%define a macro, which has been previously defined
(except on the command line - the new definition is ignored). The command %%undef X will undefine
the macro X, which can then be re-defined. This is important if an internal definition is to have
precedence over a (possible) command line definition – do a %%undef first. It is not an error to
%%undef a non-existing macro.

Macros must be a word starting with a letter or underscore followed optionally by letters underscores or
decimal digits (same as a C or iC identifier). It is highly recommended that letters in a macro are all
upper case (same recommendation as for cpp). Macro replacements can be any sort of text, which
may also include previously defined macros. For replacement as index values, they should of course
reduce to numeric values or string constants.

%%define WIDTH (5+1) /* C comment */
%%define AREA (LENGTH * WIDTH) // C++ comment

If a replacement text is longer than one line, each line except the last must finish with a backslash \
As shown above %%define lines may be terminated with a C or C++ comment. Replacement texts may
also contain embedded C comments, which will be replaced by a single space on expansion. Multiple
spaces will be replaced by one space (same as cpp). As with ' FOR loop' control lines, a C comment
must finish on the %%define line. Replacement texts for function like macros should contain at least
one sample of each parameter text. If not a warning will be issued.

Parameters may be 'stringified' in the replacement by preceding them with a single #. Two parameters
or indeed any words may be concatenated by placing ## between them. Every effort has been made
to obtain the same translations for replacement texts as those obtained by using cpp.

37

There are some deliberate minor differences. Replacements which resolve to a constant arithmetic
expression involving only the operators + - * / and % as well as () decimal integers and spaces are
evaluated in the definition. This brings error messages a little closer to the source of any erroneous
constant expression. The final result is the same though.

For the above macro immac translates %%define AREA to 48 wheras immac -m and cpp tranlates
#define AREA to (8 * (5 + 1)).

The %%define lines are not copied to the target except as comment lines, if the -a option is active for
the immac compiler.

Macro replacements may be made in all parts of the iCa code. They are of course particularly useful to
parametrise the termination of a 'FOR loop' and hence the number of blocks of iC code, which is
generated by the ' FOR loop'.

File inclusion with %%include "file" and conditional compilation with %%ifdef, %%ifndef, %%if, %
%elif, %%else, %%endif and %%error are also supported using the same rules as cpp. The word
'defined' in an %%if or %%elif expression has the usual cpp meaning - it is set to 1 (true) if defined
else 0 (false). Identifiers in such an expression which are not defined in a previous %%define or -P are
also set to 0 (false).

When immac is called with the -m option it simply becomes a macro processor handling #define,
#undef, -D, -U, #include, #if, #else etc. No iCa constructs are translated in this mode. Every
attempt has been made to make immac -m equivalent to cpp.

7.5 Differences between iC and iCa code
Straight immediate C code is usually made up of short statements declaring the relationship between
input and intermediate variables to output or intermediate variables - very similar to PLC code, which is
easy to understand by technicians. It presents a clean picture of control expressions acting on control
variables, which build up to a clear picture of the interactions with the plant to be controlled. This
interaction is most clearly visible when a live display is active, where individual changes in the real
plant parameters show up as state information in the code. This PLC style of coding is a very important
aspect of producing immediately understandable and straight forward control programs. This was the
most important design consideration for the immediate C language.

On the other hand iCa code with arrays introduces another level of algorithmic loops, control
statements and indexing in the middle of iC code for generating larger blocks of iC code. Frankly the
actual iC code required is hidden quite deeply and it requires a certain amount of skill when developing
iCa code snippets, to simply concentrate on what is to be generated and adjust the looping and control
algorithms accordingly. Frequently translating the code with the immac compiler is the best way to see
that what is generated is really the iC code envisaged. In fact I found it important to code a small block
of iC code first to lay down the control strategy. Once that is fixed, repeating statements can be rolled
into loops fairly easily. Comparing the generated code with the hand coded part using diff confirms that
iCa loop and control algorithms are correct.

Here is a hand coded iC program segment which need to be variable in length:

imm bit m0, m1, m2, m3, m4, m5, m6, m7, m8;

QX0.0 = m0 = SR(~m8, m8 & ~m1, c0);
QX0.1 = m1 = SR(~m8 & m0, m8 & ~m2, c0);
QX0.2 = m2 = SR(~m8 & m1, m8 & ~m3, c0);
QX0.3 = m3 = SR(~m8 & m2, m8 & ~m4, c0);
QX0.4 = m4 = SR(~m8 & m3, m8 & ~m5, c0);
QX0.5 = m5 = SR(~m8 & m4, m8 & ~m6, c0);
QX0.6 = m6 = SR(~m8 & m5, m8 & ~m7, c0);
QX0.7 = m7 = SR(~m8 & m6, m8, c0);
QX1.0 = m8 = SR(~m8 & m7, m8 & ~m0, c0);

38

This is the required iCa code which looks rather ghastly but does generate blocks of any length:

%%define LAST 8 // iC code snippets are highlighted

imm bit FOR (I = 0; I <= LAST; I++) {{ m[I], }};

 FOR (I = 0; I <= LAST; I++) {{
QX[I/8].[I%8] = m[I] = SR(~m[LAST]\
 IF (I == 0) {{[", "] }} ELSE {{ & m[I-1],}} m[LAST]\
 IF (I == LAST-1) {{[", "]}} ELSE {{ & ~m[(I+1)%(LAST+1)],}} c0);
 }}

A larger example if iCa code is the Parcel Sorter (s ection 7 . 7) .

7.6 immC Arrays
immC Arrays are arrays of immC bit or immC int variables of the same type as its members. They
are part if the iC language proper and are translated by the immcc compiler. (not immac)

Just like ordinary immC variables indexed references to an immC Array may be used as immediate
values in both iC and C code, but they may only be assigned and changed in C code – either in if
else or switch C code fragments or in literal blocks. Another limitation is, that immC Array indexed
value references in iC code may only use a constant expression index. Such an indexed variable is an
alias for the immC member referred to and as such simply provides some syntactic sugar. In the
example below, bb[0]is the same as bx - it simplifies coding though. Whole immC Arrays may be
passed by name in a Function Block call, if the Function Block definition specifies an immC array in that
position in its formal parameter list.

immC Arrays are declared in iC code – either with or without a list of named members.

immC int aa[3]; // immC int aa0, aa1, aa2; corres-
// ponding to aa[0] aa[1] and aa[2]
// are automatically generated

immC bit bx, by, bz; // the immC members in an initialiser
immC bit bb[] = { bx, by, bz }; // list may be pre-declared
immC bit cc[3];

A declaration of an immC Array without a member list must specify a size. The member names
automatically generated follow the same pattern as imm Arrays resolved by immac – the name of the
array followed by a number equal to the index. This choice was deliberate. Multi-dimensional immC
arrays have not been implemented.

For an array with a member list the size specification is optional, but must equal the number of
members in the list if it is specified. The names in the member list can be any previously declared
immC variable – they may even be indexed references of a previously declared immC Array. If not
previously declared, the members are generated in the array declaration, just like automatic members.

immC bit ccr[3] = { cc[2], cc[1], cc[0] }; // reverse of cc[3]

immC Arrays may be used in another source if they have been previously declared extern. The
extern declaration must match the final declaration exactly. The size must match and if a member list
is provided it must also be provided identically in the extern declaration. Only that way can the
members of an immC Array be used correctly both in iC code and C code of another source file.

extern immC int aa[3];

extern immC bit bx, by, bz;
extern immC bit bb[] = { bx, by, bz };

extern immC bit cc[3];
extern immC bit ccr[3] = { cc[2], cc[1], cc[0] };

An immC Array knows its own size and a run time warning occurs if an indexed reference is not within
the size range of the array. An indexed reference, which is out of range returns bit or int 0.

immC Arrays may be passed as formal parameters in a function block definition (section 6. 1). A formal
array parameter is a name followed by square brackets which either contain a numeric size or is
empty. If a size is given (b[4]), the call to that function block must provide a previously declared array
of exactly that size. In this case iC code in the function block can also access the array. If no size is
specified (a[]), any size array can be provided in the call. That array can only be accessed in C code
in the function block. It is up to the C code algorithm to make sure that index values are within range.

39

The built in iC operator sizeof array returns the number of elements of an immC array (not its size in
bytes). The sizeof operator works best in C code fragments where its value is dynamic at run time. It
also works in iC code, where its value is determined at compile time. A difference occurs in function
blocks which have been passed an array of indeterminate size (a[]) as a parameter. Only the sizeof
operator in C code will return the actual size of the array passed in a call. Since in this situation only
indexed references in C code fragments are possible, the sizeof test in the C code is appropriate.

sizeof may be used to test index values to produce own error strategies. The following must be true:

index < sizeof array

The following iC code triggers 1 of 100 ST() mono-flops selected by the int variable selIndex on the
rising edge of the bit variable trig. For each trig event only one of the immC members of the immC
array selGate[] fires. The whole triggering would be done in about 2 usec on a modern processor.

/**
 * Select 1 of 100 output gates
 ***/

imm timer tick; /* timer to produce delay time of selected gate */
imm bit trig; /* short pulse to initiate selection */
imm int selIndex; /* numerical index of the selected gate */

immC bit selGate[100]; /* immC Array declaration */

%{ int temp; %} /* C variable temp used only in C code */

if (trig & selIndex < sizeof selGate) { /* rising trig /
 temp = selIndex; /* assignment to C variable temp */
 selGate[temp] = 1; /* variable indexed array reference in C code */

} else { /* falling trig */
 selGate[temp] = 0; /* temp is changed on the next rising trig */
}

imm bit gate0 = ST(selGate[0], tick, 10); // start mono-flop for 10 tick
imm bit gate1 = ST(selGate[1], tick, 10);
imm bit gate2 = ST(selGate[2], tick, 10); // constant indexed array
imm bit gate3 = ST(selGate[3], tick, 10); // references in iC code
imm bit gate4 = ST(selGate[4], tick, 10);
imm bit gate5 = ST(selGate[5], tick, 10);
imm bit gate6 = ST(selGate[6], tick, 10);
imm bit gate7 = ST(selGate[7], tick, 10);
imm bit gate8 = ST(selGate[8], tick, 10);
imm bit gate9 = ST(selGate[9], tick, 10);
imm bit gate10 = ST(selGate[10], tick, 10);
imm bit gate11 = ST(selGate[11], tick, 10);
imm bit gate12 = ST(selGate[12], tick, 10);
imm bit gate13 = ST(selGate[13], tick, 10);
imm bit gate14 = ST(selGate[14], tick, 10);
imm bit gate15 = ST(selGate[15], tick, 10);
imm bit gate16 = ST(selGate[16], tick, 10);
imm bit gate17 = ST(selGate[17], tick, 10);
imm bit gate18 = ST(selGate[18], tick, 10);
imm bit gate19 = ST(selGate[19], tick, 10);
 …
imm bit gate90 = ST(selGate[90], tick, 10);
imm bit gate91 = ST(selGate[91], tick, 10);
imm bit gate92 = ST(selGate[92], tick, 10);
imm bit gate93 = ST(selGate[93], tick, 10);
imm bit gate94 = ST(selGate[94], tick, 10);
imm bit gate95 = ST(selGate[95], tick, 10);
imm bit gate96 = ST(selGate[96], tick, 10);
imm bit gate97 = ST(selGate[97], tick, 10);
imm bit gate98 = ST(selGate[98], tick, 10);
imm bit gate99 = ST(selGate[99], tick, 10);

40

This is a great efficiency improvement over the only previously possible iC strategy – a comparison
statement in each of the 100 triggering lines. In this code each of the 100 expressions

selIndex == 0, selIndex == 1, selIndex == 2 etc

is executed every time selIndex changes. This would use up about 100 usec of CPU time.

/**
 * Old style select 1 of 100 output gates
 ***/

imm timer tick; /* timer to produce delay time of selected gate */
imm bit trig; /* short pulse to initiate selection */
imm int selIndex; /* numerical index of the selected gate */

imm bit gate0 = ST(trig & selIndex == 0, tick, 10); // start mono-flop
imm bit gate1 = ST(trig & selIndex == 1, tick, 10);
imm bit gate2 = ST(trig & selIndex == 2, tick, 10);
imm bit gate3 = ST(trig & selIndex == 3, tick, 10);
imm bit gate4 = ST(trig & selIndex == 4, tick, 10);
imm bit gate5 = ST(trig & selIndex == 5, tick, 10);
imm bit gate6 = ST(trig & selIndex == 6, tick, 10);
imm bit gate7 = ST(trig & selIndex == 7, tick, 10);
imm bit gate8 = ST(trig & selIndex == 8, tick, 10);
imm bit gate9 = ST(trig & selIndex == 9, tick, 10);
imm bit gate10 = ST(trig & selIndex == 10, tick, 10);
imm bit gate11 = ST(trig & selIndex == 11, tick, 10);
imm bit gate12 = ST(trig & selIndex == 12, tick, 10);
imm bit gate13 = ST(trig & selIndex == 13, tick, 10);
imm bit gate14 = ST(trig & selIndex == 14, tick, 10);
imm bit gate15 = ST(trig & selIndex == 15, tick, 10);
imm bit gate16 = ST(trig & selIndex == 16, tick, 10);
imm bit gate17 = ST(trig & selIndex == 17, tick, 10);
imm bit gate18 = ST(trig & selIndex == 18, tick, 10);
imm bit gate19 = ST(trig & selIndex == 19, tick, 10);
 …
imm bit gate90 = ST(trig & selIndex == 90, tick, 10);
imm bit gate91 = ST(trig & selIndex == 91, tick, 10);
imm bit gate92 = ST(trig & selIndex == 92, tick, 10);
imm bit gate93 = ST(trig & selIndex == 93, tick, 10);
imm bit gate94 = ST(trig & selIndex == 94, tick, 10);
imm bit gate95 = ST(trig & selIndex == 95, tick, 10);
imm bit gate96 = ST(trig & selIndex == 96, tick, 10);
imm bit gate97 = ST(trig & selIndex == 97, tick, 10);
imm bit gate98 = ST(trig & selIndex == 98, tick, 10);
imm bit gate99 = ST(trig & selIndex == 99, tick, 10);

7.7 Parcel Sorter
The following example sortm28.ica is a controller for a full scale application which required all the
space and speed resources of a PLC in the mid 80's. This project for a parcel sorting system for the
Australian Railways prompted the author to look at alternate event driven systems for machine control.

The program is meant to control 4 high speed belts moving at 5 metres/second generating
independent strobe pulses for every 15 mm movement of the belt. That means a strobe pulse every 3
ms. Each belt is normally equipped with 32 destination gates spaced 12 strobe pulse apart and open
for 10 strobe pulses (in practice this must be 72 strobe pulses or more).

This implementation was written as an iCa language file with arrays (see section 7), which can be
scaled to any number of gates per belt. The iCa version shows the full use of FOR loops, IF ELSE
code selection and Macros.

The compiled iC program sortm28.ic shows a version with only 8 destination gates. It makes use of the
TIMER clock function, which is meant to step the timer tick for every increment of the belt (in the
original parcel sorter this was obtained from a toothed wheel on the drive shaft). TIMERs are very
efficient, because parallel delays are handled simultaneously by the one TIMER by storing deltas in a
list of timed events and counting down only the delta at the head of the list. This can be seen in action
in the traces produced by GTKWave shown at the end of this example.

41

/**
 *
 * Parcel sorter control - using analog memory for destinations
 *
 ***/

use strict;
%%define GATES 8 // number of gate destinations per belt
%%define GATES_2 ((GATES-1)/2)
%%define GATE_OFFSET 12
%%define GATE_FACTOR "34 / 3" // 11.333 no parentheses
%%define GATE_OPEN 10

/**
 * Step timer
 ***/

imm timer tick = TIMER(TX0.4, ~TX0.4);

/**
 * Destination selection inputs
 ***/

FOR (J = 0; (1<<J) < GATES; J++) {{
imm bit inp[J] = IX[(1<<J)/8].[(1<<J)%8]\
 FOR (I = (1<<J)+1; I < GATES; I++) {{

IF (I & (1<<J)) {{ // uses every 2nd input
[I%8 == ((1<<J)&7) ? " |\n\t\t" : " | "]IX[I/8].[I%8]\

}}\
 }};

}}
imm bit trans = RISE(

IX0.0\
FOR (I = 1; I < GATES; I++) {{[I%8==0?" |\n\t\t":" | "]IX[I/8].[I%8]}});

/**
 * Generate analog value of destination
 ***/

imm int dest = [GATES > 1 ? "inp0" : "0"]\
 FOR (J = 1; 1<<J < GATES; J++) {{ + inp[J]*[1<<J]}};// dest =

/**
 * Generate delay along sorting belt.
 * This delay value changes every time one of the destination
 * selection inputs 'IX0.0 - IX[(GATES-1)/8].[(GATES-1)%8]' is activated.
 * This delay is used to set a delay timer immediately.
 * NOTE: GATE_FACTOR_ can be a fractional factor by putting it in
 * double quotes
 ***/

imm int del = GATE_OFFSET + dest * [GATE_FACTOR]; // del =

/**
 * As parcels travel along the sorting belt there have to be a
 * number of simultaneous delay timers 'pt' - one for each group.
 * Worst case is a delay timer per gate if parcels are all for
 * the final destination and placed on the belt as fast as possible.
 *
 * A timer should only be used, if the timers in the previous
 * groups are already running. That makes simultaneous parallel
 * timers for each parcel input possible. The same applies to the
 * logic opening the gates, which may also happen simultaneously
 * if several timers happen to finish simultaneously.
 ***/

FOR (I = 0; I < GATES; I++) {{
imm bit xt[I];
imm bit tr[I] = SR(trans & ~tr[I]\
 FOR (J = I-1; J >= 0; J--) {{[J%8==7?" &\n\t\t":" & "]tr[J]}}, xt[I]);
imm bit dt[I] = RISE(tr[I]);
imm bit pt[I] = D(tr[I], tick, del);
 xt[I] = tr[I] & pt[I]\
 FOR (J = I-1; J >= 0; J--) {{[J%8==7?" &\n\t\t":" & "]~pt[J]}};
imm int ma[I] = SH(dt[I] ? dest : ma[I]);

}}

42

/**
 * Output gates - selected via imm int busa and immC bit array openGate[]
 ***/

imm int busa = xt[0] ? ma[0]\
 FOR (I = 1; I < GATES; I++) {{[I%4==0?" :\n\t\t":" : "]xt[I] ? ma[I]}} : 0;

imm bit trig = xt[0]\
 FOR (I = 1; I < GATES; I++) {{[I%8==0?" |\n\t\t":" | "]xt[I]}};

immC bit openGate[[GATES]];

%{
static int temp;
%}

if (trig) {
 openGate[temp = busa] = 1;
} else {
 openGate[temp] = 0; /* temp is changed on the next rising trig */
}

FOR (I = 0; I < GATES; I++) {{
imm bit gate[I] = ST(openGate[[I]], tick, GATE_OPEN);
}}

FOR (I = 0; I < GATES; I++) {{
QX[I/8].[I%8] = gate[I];
}}

The compiled iC program sortm28.ic shows a version with only 8 destination gates. This code uses
an immC bit array openGate[] to select the final gate opening mono-flops, which is very efficient.
The generated C code consists of 164 Gate nodes, 631 links and 5 C functions consisting mostly of 1
line of C code each.

/**
 *
 * Parcel sorter control - using analog memory for destinations
 *
 ***/

use strict;

/**
 * Step timer
 ***/

imm timer tick = TIMER(TX0.4, ~TX0.4);

/**
 * Destination selection inputs
 ***/

imm bit inp0 = IX0.1 | IX0.3 | IX0.5 | IX0.7;

imm bit inp1 = IX0.2 | IX0.3 | IX0.6 | IX0.7;

imm bit inp2 = IX0.4 | IX0.5 | IX0.6 | IX0.7;

imm bit trans = RISE(
IX0.0 | IX0.1 | IX0.2 | IX0.3 | IX0.4 | IX0.5 | IX0.6 | IX0.7);

/**
 * Generate analog value of destination
 ***/

imm int dest = inp0 + inp1*2 + inp2*4; // dest =

/**
 * Generate delay along sorting belt.
 * This delay value changes every time one of the
 * destination selection inputs 'IX0.0 - IX0.7' is activated.
 * This delay is used to set a delay timer immediately.
 * NOTE: GATE_FACTOR_ can be a fractional factor by putting it in
 * double quotes
 ***/

imm int del = 12 + dest * 34 / 3; // del =

43

/**
 * As parcels travel along the sorting belt there have to be a
 * number of simultaneous delay timers 'pt' - one for each group.
 * Worst case is a delay timer per gate if parcels are all for
 * the final destination and placed on the belt as fast as possible.
 *
 * A timer should only be used, if the timers in the previous
 * groups are already running. That makes simultaneous parallel
 * timers for each parcel input possible. The same applies to the
 * logic opening the gates, which may also happen simultaneously
 * if several timers happen to finish simultaneously.
 ***/

imm bit xt0;
imm bit tr0 = SR(trans & ~tr0, xt0);
imm bit dt0 = RISE(tr0);
imm bit pt0 = D(tr0, tick, del);
 xt0 = tr0 & pt0;
imm int ma0 = SH(dt0 ? dest : ma0);

imm bit xt1;
imm bit tr1 = SR(trans & ~tr1 & tr0, xt1);
imm bit dt1 = RISE(tr1);
imm bit pt1 = D(tr1, tick, del);
 xt1 = tr1 & pt1 & ~pt0;
imm int ma1 = SH(dt1 ? dest : ma1);

imm bit xt2;
imm bit tr2 = SR(trans & ~tr2 & tr1 & tr0, xt2);
imm bit dt2 = RISE(tr2);
imm bit pt2 = D(tr2, tick, del);
 xt2 = tr2 & pt2 & ~pt1 & ~pt0;
imm int ma2 = SH(dt2 ? dest : ma2);

imm bit xt3;
imm bit tr3 = SR(trans & ~tr3 & tr2 & tr1 & tr0, xt3);
imm bit dt3 = RISE(tr3);
imm bit pt3 = D(tr3, tick, del);
 xt3 = tr3 & pt3 & ~pt2 & ~pt1 & ~pt0;
imm int ma3 = SH(dt3 ? dest : ma3);

imm bit xt4;
imm bit tr4 = SR(trans & ~tr4 & tr3 & tr2 & tr1 & tr0, xt4);
imm bit dt4 = RISE(tr4);
imm bit pt4 = D(tr4, tick, del);
 xt4 = tr4 & pt4 & ~pt3 & ~pt2 & ~pt1 & ~pt0;
imm int ma4 = SH(dt4 ? dest : ma4);

imm bit xt5;
imm bit tr5 = SR(trans & ~tr5 & tr4 & tr3 & tr2 & tr1 & tr0, xt5);
imm bit dt5 = RISE(tr5);
imm bit pt5 = D(tr5, tick, del);
 xt5 = tr5 & pt5 & ~pt4 & ~pt3 & ~pt2 & ~pt1 & ~pt0;
imm int ma5 = SH(dt5 ? dest : ma5);

imm bit xt6;
imm bit tr6 = SR(trans & ~tr6 & tr5 & tr4 & tr3 & tr2 & tr1 & tr0, xt6);
imm bit dt6 = RISE(tr6);
imm bit pt6 = D(tr6, tick, del);
 xt6 = tr6 & pt6 & ~pt5 & ~pt4 & ~pt3 & ~pt2 & ~pt1 & ~pt0;
imm int ma6 = SH(dt6 ? dest : ma6);

imm bit xt7;
imm bit tr7 = SR(trans & ~tr7 & tr6 & tr5 & tr4 & tr3 & tr2 & tr1 & tr0, xt7);
imm bit dt7 = RISE(tr7);
imm bit pt7 = D(tr7, tick, del);
 xt7 = tr7 & pt7 & ~pt6 & ~pt5 & ~pt4 & ~pt3 & ~pt2 & ~pt1 & ~pt0;
imm int ma7 = SH(dt7 ? dest : ma7);

/**
 * Output gates - selected via imm int busa and immC bit array openGate[]
 ***/

imm int busa = xt0 ? ma0 : xt1 ? ma1 : xt2 ? ma2 : xt3 ? ma3 :
xt4 ? ma4 : xt5 ? ma5 : xt6 ? ma6 : xt7 ? ma7 : 0;

imm bit trig = xt0 | xt1 | xt2 | xt3 | xt4 | xt5 | xt6 | xt7;

immC bit openGate[8];

44

%{
static int temp;
%}

if (trig) {
 openGate[temp = busa] = 1;
} else {
 openGate[temp] = 0; /* temp is changed on the next rising trig */
}

imm bit gate0 = ST(openGate[0], tick, 10);
imm bit gate1 = ST(openGate[1], tick, 10);
imm bit gate2 = ST(openGate[2], tick, 10);
imm bit gate3 = ST(openGate[3], tick, 10);
imm bit gate4 = ST(openGate[4], tick, 10);
imm bit gate5 = ST(openGate[5], tick, 10);
imm bit gate6 = ST(openGate[6], tick, 10);
imm bit gate7 = ST(openGate[7], tick, 10);

QX0.0 = gate0;
QX0.1 = gate1;
QX0.2 = gate2;
QX0.3 = gate3;
QX0.4 = gate4;
QX0.5 = gate5;
QX0.6 = gate6;
QX0.7 = gate7;

The following are the 5 generated C code fragments. The macro iC_MV(1) accesses a logical value
on the generated link array. Fragment (5) are the two C code snippets for the if part and the else
part. iC_LAI(2, temp = iC_AV(3) , 0, 1) performs an indexed assignment to a logical
immC variable (2), which is openGate[], which is indexed by iC_AV(3), which gets an analog value
from (3), which is busa (and which is also assigned to temp). The last number 1 is the logical value
assigned – thereby setting the ST() mono-flop for the selected gate. It is 0 in the else part.

One can see from this that even for int nodes the execution time for one event is going to be no more
than a few microseconds.

******* C CODE ************************
124
125 static int temp;
126

#line 202 "init.c" /* in pre-compiled function block SHR */
202 (1) return iC_MV(1)?iC_MV(2):iC_MV(3);

#line 32 "sortm28.ic"
032 (2) return iC_MV(1)+iC_MV(2)*2+iC_MV(3)*4;

042 (3) return 12+iC_MV(1)*34/3;

118 (4) return iC_MV(1)?iC_MV(2):iC_MV(3)?iC_MV(4):iC_MV(5)?iC_MV(6):
118 iC_MV(7)?iC_MV(8):iC_MV(9)?iC_MV(10):iC_MV(11)?iC_MV(12):
118 iC_MV(13)?iC_MV(14):iC_MV(15)?iC_MV(16):0;

128 (5) {
129 iC_LAI(2, temp = iC_AV(3) , 0, 1);
130 }

130 {
131 iC_LAI(2, temp , 0, 0); /* temp is changed on the next rising trig */
132 }

To start sortm28 to produce VCD files execute the following on the command line: ctrl-C when done

iCserver -kr 'sortm28 -v sortm28.vcd' 'iCbox IX0,,250 QX0'

This also starts an iCbox with 8 digital inputs IX0.0 - IX0.7, which in this case are push-buttons
with a 250 ms turn-off delay. They only need to be clicked to send a 250 ms on/off pulse to the
application. It also implements 8 digital outputs QX0.0 – QX0.7. The iCbox man-page provides
more details for configuring push-buttons, which were only introduced with version 1.31.

Each input starts a timer varying from 12 ticks for IX0.0 to 91 ticks for IX0.7. At the end of their
respective timer delays the outputs QX0.0 to QX0.7 will turn on for 10 ticks.

45

Fig. 1 GTKWave traces of all nodes of sortm28.ic with gtkwave sortm25.vcd sortm25.sav

For this set of traces IX0.7 to IX0.0 were clicked one after the other so that the respective delays
caused the outputs to turn on nearly simultaneously. At the top we can see IX0.2 IX0.1 and IX0.0
transferring 2 1 and 0 to dest and ma5 to ma7 and the computed delays 34 28 and 12 to del. This
starts delays in tr5 to tr7. When the delays terminate they are transferred via openGate[busa] to start
the output delays gate0 to gate7, which are aliased by QX0.0 to QX0.7.

46

8 The iC run-time model

The iC compiler immcc parses the statements of an iC source, e.g. example.ic and generates a C file
example.c and optionally a listing file example.lst. The C file is compiled by a C compiler to produce
example.o (example.obj under Windows), which is linked with the iC runtime library libict.so (or
libict.a) to produce an executable example (example.exe under Windows).

********************* SOURCE example.ic *********************
imm bit a = IX0.0 & ~IX0.1 | ~IX0.0 & IX0.1;
QX0.0 = a;
imm bit b = IX0.2 ^ IX0.3;
imm bit d = ~IX0.2 & ~IX0.3;
imm bit mem = LATCH(b, d);
QX0.1 = mem;
********************* LISTING example.lst *******************
001 imm bit a = IX0.0 & ~IX0.1 | ~IX0.0 & IX0.1;

a_1 ---| a
a_2 ---|

IX0.0 ---& a_1
IX0.1 ~ ---&

IX0.0 ~ ---& a_2
IX0.1 ---&

002 QX0.0 = a;

a ---| QX0.0 X

003 imm bit b = IX0.2 ^ IX0.3;

IX0.2 ---^ b
IX0.3 ---^

004 imm bit d = ~IX0.2 & ~IX0.3;

IX0.2 ~ ---& d
IX0.3 ~ ---&

005 imm bit mem = LATCH(b, d);

mem ---% mem
b ---%
d ~ ---% *

006 QX0.1 = mem;

mem ---| QX0.1 X

******* NET TOPOLOGY **
IX0.0 < ~a_2& a_1&
IX0.1 < a_2& ~a_1&
IX0.2 < b^ ~d&
IX0.3 < b^ ~d&
QX0.0 | X
QX0.1 | X
a | QX0.0|
a_1 & a|
a_2 & a|
b ^ mem%
d & ~mem% *
mem % mem% QX0.1|

E
xt

er
na

l d
ig

ita
l i

np
ut

s

47

Fig. 2 Graph representation of the iC program example.ic

********************* C OUTPUT CODE example.c **********************
static Gate * l_[];
/***
 * Gate list
 ***/
Gate IX0_0 = { 1, INPX, GATE, 0, "IX0.0", 0, 0, 0 };
Gate IX0_1 = { 1, INPX, GATE, 0, "IX0.1", 0, 0, &IX0_0 };
Gate IX0_2 = { 1, INPX, GATE, 0, "IX0.2", 0, 0, &IX0_1 };
Gate IX0_3 = { 1, INPX, GATE, 0, "IX0.3", 0, 0, &IX0_2 };
Gate QX0_0 = { 1, OR, OUTX, 0, "QX0.0", 0, &l_[0], &IX0_3 };
Gate QX0_1 = { 1, OR, OUTX, 0, "QX0.1", 0, &l_[3], &QX0_0 };
Gate a = { 1, OR, GATE, 0, "a", 0, &l_[6], &QX0_1 };
Gate a_1 = { 1, AND, GATE, 0, "a_1", 0, &l_[10], &a };
Gate a_2 = { 1, AND, GATE, 0, "a_2", 0, &l_[14], &a_1 };
Gate b = { 1, XOR, GATE, 0, "b", 0, &l_[18], &a_2 };
Gate d = { 1, AND, GATE, 0, "d", 0, &l_[22], &b };
Gate mem = { 1, LATCH, GATE, 0, "mem", 0, &l_[26], &d };
/***
 * Connection lists
 ***/
static Gate * l_[] = {
/* QX0.0 */ &a, 0, 0,
/* QX0.1 */ &mem, 0, 0,
/* a */ &a_2, &a_1, 0, 0,
/* a_1 */ &IX0_0, 0, &IX0_1, 0,
/* a_2 */ &IX0_1, 0, &IX0_0, 0,
/* b */ &IX0_3, &IX0_2, 0, 0,
/* d */ 0, &IX0_3, &IX0_2, 0,
/* mem */ &mem, &b, 0, &d, 0,
};
The C output of the immcc compiler consists mainly of initialised data definitions, which describe a
directed graph of vertices or nodes and edges joining the nodes. Each node of this graph corresponds
to an expression in the iC program - they are called Expression nodes. The graph produced by the

E
xt

er
na

l d
ig

ita
l i

np
ut

s

48

compiler is directed towards the inputs, which are called sources in graph theory (see Fig 2 above).
This means that a list of the inputs to each Expression is associated with a particular Expression node.
These are the edges of the graph. This direction represents the way in which expressions are usually
evaluated in a procedural strategy following the flow of instructions – consecutive instructions read the
values of all input variables of an expression and arithmetic or bit operators, acting on adjacent
operands, determine the result. Programmers are used to think about expressions this way.

The run-time model for iC is best visualized by thinking of expressions as digital or analog IC
components, interconnected as in the above graph. The listing file represents all Expression nodes
generated by the compiler in this way (see LISTING above). Each time the output of one of these
components changes, that change will act on any inputs to which that output is connected.

For immediate C, the compiled graph, whose edges point towards the inputs of each node, is loaded
into memory and as a first step, all edges are reversed. This means, that each Expression node is
associated with a list of follow on Expression nodes, for which the current Expression result is an input.
What this means is, that when a particular Expression node changes its value, then all the expressions
for the Expression nodes on its target list should be re-evaluated (see NET TOPOLOGY above)

8.1 Combinatorial immediate actions
Combinatorial immediate actions are the evaluation of arithmetic or bit expressions, which excludes the
full evaluation of any embedded clocked functions. Expressions contain immediate variables combined
with operators, which describe a (possibly) changed result when an input variable to the expression
changes. Although the evaluation of an expression takes a certain (small) amount of time – both for
hardware IC's and for iC expressions, conceptually we are dealing with a mathematical statement,
whose evaluation describes a change of state – an operation, which does not necessarily take any
time. One completed scan of the combinatorial action list is such a conceptually timeless combinatorial
set of state-changing actions.

To implement this scheme, the iC run-time uses Expression nodes, which can be linked into action lists
and which store the old value of the node – that is the value before the expression is re-evaluated - as
well as the new value after re-evaluation. If these values are equal after a change of input and re-
evaluation, no further action is taken – follow on nodes will not change either, because of this particular
change of input. If the new value is different from the old value, the Expression node is said to “fire” (a
term borrowed from Petri Nets). When this happens, the Expression node is linked to the end of an
action list. While on an action list, the old and new values are kept in the node. Arithmetic nodes are
implemented like this – each node is associated with an arithmetic expression, which is evaluated as a
snippet of C code, each time one of it's inputs changes.

Bit expression nodes are implemented differently. Each logical GATE node implements just one bit
expression of type AND, OR, XOR or LATCH. (GATEs of type LATCH implement the single gate
FORCE function). The algorithm used for AND, OR and LATCH GATEs is majority logic. In majority
logic, the number of '1' inputs on a gate are counted. If this number exceeds a certain threshold, the
output is '1' – otherwise it is '0'. The only difference between the AND, OR and LATCH function is the
threshold. This means, that for all three types of GATEs, only the initialisation of the threshold is
different – the same counting operation at run-time holds for all three. This algorithm is very similar
to biological neurons, which prompted the idea.

a b c '1'
count

OR

 threshold 1

AND

 threshold 3

LATCH

 threshold 2

0 0 0 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 1 0 0

1 1 0 2 1 0 1

0 0 1 1 1 0 0

1 0 1 2 1 0 1

0 1 1 2 1 0 1

1 1 1 3 1 1 1

For the OR function, the threshold is always 1, no matter how many inputs the GATE has. Only when
no inputs (<1) are '1' is the output '0' – otherwise it is always '1'.

49

For the AND function, the threshold is set to the number of inputs the GATE has. When all inputs are
'1' the output is '1' – otherwise it is '0' (at least one input is '0').

The three input FORCE function described in section 3 .2 is shown here in more detail and with the 'off'
input inverted.

FORCE(arg1, on, ~off)

arg1 on ~off FORCE(arg1,on,~off)

0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 1

0 1 1 1

1 1 1 1

This is the same truth-table as the 3 input majority LATCH GATE with a threshold of 2. Only the 'off'
input needs to be inverted.

Each GATE node has a signed byte member gt_val, which counts input changes and provides the
logic output. The sign bit of gt_val is the bit value of the output. Thus -1, -2, -3 … -127 are all a '1'
output.
+1, +2, +3 … +127 are all a '0' output. These values are normalised to -1 for '1' and +1 for '0' when
doing majority logic. Because of this counting algorithm with a signed byte, the number of inputs to
simple AND and OR GATEs are limited to 127. (Should more inputs be required a final post-processor
of the compiler splits those large GATEs into several smaller ones). GATEs are initialised, so that all
inputs are logically '0' and gt_val is initialised to +1 for OR gates, +n for AND gates (where n is the
number of inputs) and +2 for LATCH gates (where the number of inputs is always 3). Since all inputs
and outputs are thus initially '0' they can only change to '1'. A change to '1' causes the numerical value
of '1' – namely -1 to be added to gt_val of the target. If this change causes gt_val to be 0, the gate is
said to fire. This results in the numeric value being added again resulting in gt_val now being -1 and
the master GATE action being executed. For GATE nodes the master action is simply linking the node,
which holds the updated logical value in gt_val, to the output list. This propagates the change in bit
value. The following very compact piece of C code implements this algorithm:

if ((gp->gt_val += val) == 0) { /* gate function */
 gp->gt_val = val; /* step past 0 */
 (*masterAct[gp->gt_fni])(gp, iC_oList); /* master action */
}

To implement logical inversion each logical GATE node has two null terminated target lists – the first
list is for actions which are non-inverting – the second list is for actions which are inverting. When
scanning the second list , the source logic value is inverted by subtracting the logic value +1 or -1.
Arithmetic nodes have only one null terminated target list.

val = (op->gt_val < 0) ? -1 : 1; /* logic value from source node */
lp = op->gt_list /* lp points to 1st target list */
while ((gp = *lp++) != 0) { /* scan non-inverted targets */
 if ((gp->gt_val += val) == 0) { /* normal logic */

gp->gt_val = val; /* step past 0 */
(*masterAct[gp->gt_fni])(gp, iC_oList); /* master action */

 }
} /* lp points to 2nd target list */
while ((gp = *lp++) != 0) { /* scan inverted targets */
 if ((gp->gt_val -= val) == 0) { /* inverted logic */

gp->gt_val = -val; /* step past 0 */
(*masterAct[gp->gt_fni])(gp, iC_oList); /* master action */

 }
} /* normal and inverting actions completed */

50

The logical XOR function is handled differently again. Each change of input from 1/0 or 0/1 causes
the target to be negated from +1 to -1 or -1 to +1 and fire immediately. XOR GATEs are initialised to +1
(logical '0') for all inputs '0', which is the initial condition. Logical inversion is the same as above,
although the action is the same for both non-inverting and inverting target lists (negate the target and
fire).

There are four types of action list to which Expression nodes may be linked when they “fire” during the
combinatorial scan:

1. oList, to which logical GATE nodes are linked.

2. aList, to which arithmetic expression nodes are linked.

3. cList or another clock list, to which clocked function Master nodes are linked.

4. sList, to which external output expression nodes are linked.

To simplify the description, oList and aList are discussed here as a single combinatorial action list.
For the combinatorial scan, the Expression node at the head of the combinatorial action list is taken
and the target list(s) of that node is scanned, using the code on the previous page. Every Expression
node on that target list is re-evaluated, using the new value of the Expression node just taken from the
combinatorial action list, with the result that some Expression nodes on the target list may change and
“fire”. These nodes are then linked to the end of an appropriate action list. The old value of the original
Expression node is assigned the new value at this time and it is unlinked from the head of the
combinatorial action list – that node is now no longer active. The combinatorial scan is continued with
the new head of the combinatorial action list until the list is empty.

There is another possibility. The target Expression node is already somewhere on some action list,
which means its value has recently changed, but the new value has not yet been transmitted to any
follow on nodes. Now another Expression node acts on this particular Expression node and re-
evaluation changes its value a second time. There are two possibilities:

1. The latest value is still different from the old value (the value it had when its target list was last
scanned and follow on nodes were re-evaluated). In this case the Expression node is left on
the action list with a (possibly) changed new value.

2. Re-evaluation changes the new value back to the old value. This situation is called a “glitch”.
The Expression node is now unlinked from the action list and becomes inactive, before it acts
on any follow on nodes. The reasoning behind this strategy is, that any temporary change,
which occurs through one path of the graph, which is immediately undone by some expression
on another path, should not influence the output. This handling of glitches and subsequent
clocking, which is guaranteed to ignore glitches, make hardware IC circuits and iC
programs really robust.

Initially nodes can only get on the combinatorial action list due to changes of external inputs (sources)
of the graph. Normally such a change will percolate through paths of the graph to one or more external
output nodes (sinks). At this stage the combinatorial action list is usually empty.

Cycles are allowed in the graph – they occur when there is feedback in the iC program. Such feedback
is often necessary for implementing designs, but the designer should control it. Feedback may result in
situations, where continuous oscillations occur. When this happens, certain nodes will change to a new
value – act on some follow on node(s), which will then change the original node back to the old value
after it has acted on other nodes. This means the action list will never get empty. If nothing were done
about this, the iC program would lock up the processor.

Continuous oscillations at the Expression node level should not be part of a design and this situation
results in a warning message at run-time. Nevertheless for testing purposes, such a program should
be able to run without locking up the processor. To achieve this, a strategy is used, where the number
of times a particular node may be re-evaluated in one scan is limited – usually to three. This is the
maximum oscillator count, which may be changed with the -n <count> command-line switch. If the
maximum oscillator count for any node is exceeded after re-evaluation of that node, it is not linked to
the normal combinatorial action list, but to an alternate action list. This way the current combinatorial
action list will always get empty within a finite number of actions. At the end of the scan, when the
current combinatorial action list does become empty, the combinatorial action list and the alternate
action list are swapped. At this point in time the iC run-time process goes to sleep, waiting for new
input.

When a new external input interrupts the system, the associated input node is linked to the now current
swapped combinatorial action list and triggers a new scan. Together with the new input and its follow
up events, the oscillating nodes, which were linked to the (then alternate) list during the previous scan,
will be evaluated again. This way the oscillations do get re-evaluated over and over – but at a rate

51

which does not block the processor. This is similar to the way oscillations manifest themselves in a
hardware IC circuit – a large but finite number of oscillations will occur between any two consecutive
external input events. In iC programs, this number has been reduced to three, which does not change
the way these oscillations affect other parts of the program. In practice it has been found useful to
make this an odd number, so that rising and falling edges alternate for digital oscillations.

All this takes care of what is called “combinatorial logic” for digital systems. Sequencing requires
different mechanisms and they are provided in the iC language by clocking and clocked functions.

8.2 Clocked immediate actions
As mentioned before, clock signals in iC are best thought of as timeless pulses, whose occurrence
marks the separation of one clock period from the next along the time axis. For these purposes actions
in the iC run-time occur in two phases – combinatorial immediate actions, which were described in the
previous section and clocked immediate actions, which are always master-slave actions, which occur
during the clock phase.

Clocked functions contain one or more Master nodes and exactly one Slave node. Master nodes are
expression nodes – just like the ones described in the previous section, except their output does not
act directly on follow on expression nodes and therefore are not linked to the current combinatorial
action list when they “fire”. There is a Master node for every non-clock input parameter to a function.
Associated with each such non-clock parameter is a clock parameter. If it is not mentioned explicitly in
the parameter list, it has a default value – usually iClock. Master nodes which “fire”, are linked to the
clock list associated with the clock parameter for the particular Master node.

Clock lists are similar to action lists – they may be empty or have one or more expression nodes linked
to them. Clock lists are associated with the Slave node of a clock function or “driver”. There is one
special clock list called cList, which is associated with the default iClock and which is scanned every
time a combinatorial scan completes unless cList is empty. This clock scan marks the occurrence of
iClock. In other words combinatorial scans and clock scans alternate until both the current
combinatorial action list and cList are empty. For the purpose of synchronisation, it is important to
remember that during the combinatorial scan new nodes are evaluated and linked to one of the
following:

1. the current combinatorial action lists oList or aList – described in the previous section.

2. cList or another clock list – which receive Master nodes of clocked functions.

3. sList – which receives those Expression nodes whose action is external output.

During the clock scan only cList is scanned. There are several different clock actions, but they only
involve the value of a Master node modifying the value of a Slave node and some side effect
associated with the clocked function. The different clock actions are:

1. Clocking of a logical or arithmetic function – the new value of the Slave node is determined by
the slave action of the Master node on the Slave node, which is linked to the current
combinatorial action list if its value changes – it becomes a new logical or numeric output,
which will not have any effect on inputs until after the current clock scan has completed.

2. Clocking of a CLOCK or TIMER driver function – the clock list associated with the CLOCK or
TIMER function Slave node, which contains the accumulated Master nodes linked to that clock
list, is linked to the end of cList. This means, that the CLOCK or TIMER function has “fired”
and the slave actions of the Master nodes, which have accumulated on its clock list will also be
executed during the current clock scan, since they are now on cList.

3. Clocking of a conditional if else or switch statement condition. Because these clocked
conditions cause execution of C code embedded in the iC program, which may involve using
values of clocked slave nodes, some of which may have been modified during the current
clock scan whereas others may not have been modified yet. For this reason the actual
execution of the C code must be deferred until after completion of the current clock scan so
that all slave node values are synchronised. For this purpose the Master nodes of any
conditional if else or switch statement condition on the clock list are unlinked and linked
to another action list called fList.

The scan of cList is always finite, since no new Master nodes are added to any clock list during the
clock scan. When the clock scan terminates a single scan of fList follows, unless fList is empty.
The start of the fList scan marks the end of a clock phase and the beginning of a new combinatorial
phase. After this another combinatorial scan followed by a clock scan is done, because both clocked
slave actions and the fList scan may have generated new combinatorial actions.

52

8.3 Output actions
Finally, when both the current combinatorial action list and cList are empty, a single scan of sList
follows. During that scan the actual external output is performed. Each bit output is first distributed to
an output byte and then the output bytes, words and long words which have changed since the last
cycle are either output directly (currently only possible on a Rapberry Pi) or transmitted via TCP/IP to
iCserver, which distributes them to their final output destinations, where they act physically. At this
point the process sleeps until it is interrupted by an external or internal input.

8.4 Input actions
External inputs come from physical input device drivers and are transmitted as bytes, words or long
words again either directly or via TCP/IP through iCserver, using the same protocol as the output.

Most drivers use TCP/IP as the transport protocol from and to the iC run-time system and the final
physical input and output device(s) in the current implementation. This ensures, that no input or output
is lost during transmission. Nagle's algorithm is inhibited to ensure immediate delivery. Other safe
transmission systems can be used – only the actual input and output driver software needs to be
changed.

The run-time system also recognises internal inputs which are mainly interrupts from the processors
real-time-clock used for timing operations. These are described in section 5 .1.3.

External and internal inputs interrupt the run-time system. Initially the source of the interrupt is
analysed and Input nodes are “fired” for every changed input (and only those that have changed) and
these are linked immediately to the current combinatorial action list. Then a new cycle is initiated
starting with a scan of the current combinatorial action list.

8.5 Input/Output network
The network clients around iCserver can comprise one or more iC applications and any number of real
I/O drivers as well as iCboxes and iClift, which simulate real I/O in the current implementation. Input
and output can be transmitted not only to and from iC applications and iCboxes but also between iC
applications. Since all of these elements can run on any processor in a LAN or even in the Internet, this
opens up interesting possibilities for the iC system.

Fig. 3 Input/output network

Processor 2

Processor 1

1

iCserver

LAN or Internet

iCbox

2

iCbox

3

iCbox

iC application 1

iC application 2

53

9 Compiler and Run-time system

9.1 Compiler
The iC compiler immcc generates C code with the extension .c from iC source files with the extension
.ic, which is suggested for iC sources. It is also suggested, that iC header files have the extension
.ih. For larger projects, several .ic files may be compiled to .c files, which are then compiled by cc
to .o files and linked with the dynamic library libict.so, which contains the run-time code. This
produces a finished application, which can be run in an environment compatible with the features of the
run-time library. Alternatively the static library libict.a can be used. This generates much larger code,
but does provide extensive debugging output from a running system.

The iCa pre-compiler immac generates iC source files with the extension .ic from iC with arrays (iCa)
source files with the extension .ica.

The shell script iCmake executes all these steps automatically – it makes a complete iC application
from one or more iC and/or iCa source files.

9.2 Run-time libraries
There are several versions of the run time library, depending on the hardware interfaces available for
Input and Output. The libraries libict.so or libict.a communicate their Input and Output via TCP/IP,
which provides a turnaround time of an input change to the arrival of the corresponding output change
in a lightly loaded network of less than 1.7 milliseconds (measured on a Raspberry Pi 2B). The
uncertainty of load occurring in such a network forces one to look at specialized bus systems for high
speed applications. Using direct I/O rather than TCP/IP 90 microseconds turnaround was measured on
the Raspberry Pi 2B.

Other libraries have been built for industrial field bus systems. The library for InterBus-S is complete
and has been extensively tested with InterBus-S I/O modules. A library for a proprietary high speed
field bus system was used for early tests and provided turnaround times of under a 100 microseconds
on a 386 8 MHz processor. A CAN-Bus library is planned and could be implemented at short notice.

9.3 Run-time environment and system
For any applications where hard real time constraints are not a problem, the TCP/IP run-time system
provides a very flexible and easy to configure environment where Input and Output may be distributed
over a number of computers in a local area network. The system consists of a server called iCserver
and a number of clients for which iCserver is the hub. An iC application linked with the libict.so library
is one type of client, providing control in the system. The other client types are Input and Output
modules (or combined I/O modules) and debugging tools.

iCserver has been implemented in Perl, which is very flexible and fast enough to keep up with TCP/IP
traffic generated in a local area network. A faster C implementation of iCserver is possible. The
program iCbox simulates Input/Output modules as Perl/Tk dialog boxes for digital and analog inputs
and outputs. For real inputs and outputs iCbox can serve as a program template. Only the translation
of the I/O signals to a short network message for transmission to the iCserver is necessary to port an
I/O device. This has been done with iCpiFace for the Raspberry Pi. A simple and very compact
protocol for passing messages to and from the iCserver has been defined.

The program iClive provides an IDE for editing and debugging iC programs. It provides an edit
window, in which program text can be displayed and optionally edited, searched, saved, made into
runnable code, run and stopped. When running and debugging an iC program, iClive is a client of
iCserver and indirectly of the running iC program. In “Live” mode iClive colours words in the program
text according to the state of the node named by a word – green/black for bit 0, yellow/red for bit 1,
blue for arithmetic variables, Rust red for clocks and cadet blue for timers. To be effective, the
displayed text must be either the source of the running iC program or a text derived from that source,
such as the compiler generated listing, which shows all compiler generated extra nodes. Short
transients are extended to display for 50 ms – an idea taken from the Hewlett Packard logic probe. The
numerical value of a node is also displayed when the cursor hovers over a word. With this colour
coded display of the statements of the iC program, it is easy to follow the progress of execution and
the related logic at run time. "Live displays" are commonly used in programming units for PLC's in
industrial control environments to provide debugging support. immediate C follows this example. In
“Debug” mode “Watch” points can be applied to iC variables, which cause the program to stop when
they change. “Single stepping” through every change is also provided for.

54

9.3.1 iCbox, iClive and iCman in action

Fig. 4 iCbox as IO for “sort32i” - IX0.0, QX0.2 and QX8.1 are “on” - the rest are “off”. IB3 has a value
of 3, othe analog inputs are 0.

Fig. 5 iClive in EDIT mode with a search for IX0.5 shown. The application “sort32i” is not running –
press “Run” and then “Live” to get to Fig. 6. - press “Help” to get the man-page (see Fig. 7).

55

Fig. 6 iClive in LIVE mode - QX8.1, QX0.2 and IX0.0 are “1” - the rest are “0”. IB3 is non-zero.
“sort32i” is running. – it can be stopped by pressing the “Stop” button and/or switched
to Edit mode by pressing the “Edit” button (see Fig. 5). Debug mode allows setting and
continuing from Watch points and single stepping.

Fig. 7 iCman showing the start of the man-page for iClive. A search for “Text” is shown.

For command line use, a shell script iCmake builds one or more applications from iC sources using
the compilers immac, immcc and the libraries libict.so or libict.a. The programs immac, immcc,
iCserver, iCbox, iClive and iCmake as well as each compiled and linked iC application provide a
generous help output with the -h switch option. Each of these programs also has a full man page which
may be viewed with 'man' in a Unix like environment or with iCman, a man page viewer with interesting
hyperlink, search and text magnification features, much like a browser.

56

9.4 GTKWave Wave Analyzer
GTKWave (an open-source program) is an analysis tool originally intended to perform debugging on
Verilog or VHDL simulation models. Except for interactive VCD viewing, it is not intended to run
interactively with simulation, but instead relies on a post-mortem approach through the use of dump-
files. Various dump-file formats are supported:

• VCD: Value Change Dump. This is an industry standard file format generated by most Verilog
simulators and is specified in IEEE-1364.

(Extract from the GTKWave 3.3 Wave Analyzer User's Guide) Use in the iC system is hereby gratefully
acknowledged.

Since version 1.131 of the iC run-time a VCD file and an associated SAV file can be generated by an
iC application by using the -v option. This allows the interactive or post-mortem viewing of both logic
and analog traces against a virtual time scale. This time scale was chosen so that each sequential
change in any signal is 1 virtual microsecond. iClock cycles take up 2 virtual microseconds. Each new
external input (Ixn.m, IBn, IWn ILn or TX0.m) occurs on the next 10 virtual microsecond boundary.

Fig. 7 GTKWave showing part of the running of the iC application 'bar -v bar.vcd'.

iClock is shown as the top trace. The auxiliary clock c0 and the timer t are in sync with iClock as can
be seen just before and after marker A. The rising edge of TX0.4 (the 100 ms timer) sets t_1, which in
turn is the slave input to the TIMER producing timer t (which occurs in the next iClock phase). The
following is an excerpt from the listing file bar.lst:

019 imm timer t = TIMER(TX0.4);

t_1 T ---! t !

iClock : ---| t_1 T
TX0.4 ---|

025 imm bit b0 = D(~b0 & f0, t, d0) | CHANGE(IX0.0 & ~f0);

b0_1 ---| b0

57

b0_2 ---|

b0_4 D ---# b0_1

b0_3 V ---> b0_2

iClock : ---& b0_3 V
IX0.0 ---&
f0 ~ ---&

t ! ---& b0_4 D
IB1 A<---&
b0 ~ ---&
f0 ---&

026 imm clock c0 = CLOCK(b0);

c0_1 C ---: c0 :

iClock : ---| c0_1 C
b0 ---|

035 imm bit m7 = SR(~m8 & m6, m8 , c0);

m7_1 S ---# m7
m7_2 R ---#

c0 : ---& m7_1 S
m8 ~ ---&
m6 ---&

c0 : ---| m7_2 R
m8 ---|

036 imm bit m8 = SR(~m8 & m7, m8 & ~m0, c0);

m8_1 S ---# m8
m8_2 R ---#

c0 : ---& m8_1 S
m8 ~ ---&
m7 ---&

c0 : ---& m8_2 R
m8 ---&
m0 ~ ---&

(At marker A) D flip-flop b0_1 sets with the next timer t tick, because d0 (alias IB1) is currently 1 (as
seen in the trace). This raises b0, which sets CLOCK slave c0_1 and lowers gate b0_4 in that order.

Next (at marker B) iClock resets flip-flop b0_1 because input b0_4 is now '0'. This is followed by clock
c0 setting SR flip-flop m8 (slave m8_1 was set by ~m8 & m7 at the previous clock c0). The setting of
m8 sets slave gate m7_2 and resets slave gates m0_1 to m8_1 (at marker C). This is followed by the
resetting of b0 (input b0_1 was reset earlier in this combinatorial cycle). b0 in turn resets c0_1 and sets
b0_4 (at marker D). This finishes the combinatorial cycle and starts another iClock which does nothing.
The next action is the external TX0.4 resetting, which resets slave gate t_1, which has no follow-up.

GTKWave is not part of the OpenSUSE Linux distribution, but it can be easily installed with an RPM
package from the internet. Caveat: conversion of VCD files to LXT files with 'vcd2lxt' does not work
satisfactorily. CLOCK and TIMER events are not converted. Therefore use VCD files only for iC.

58

10 Bibliography

[Aho86] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman
Compilers Principles, Techniques, and Tools
Addison-Wesley Publishing Company 1986

[Davis01] John Davis II, et al
Overview of the Ptolemy Project
University of California, Berkeley 2001

[Johnson75] Stephen C. Johnson
Yacc – yet another compiler compiler
Computer Science Technical Report 32,
Bell Telephone Laboratories, Murray Hill, NJ, July 1975

[Johnston04] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar
Advances in Dataflow Programming Languages
ACM Computing Surveys, Vol. 36, No. 1, March 2004, pp. 1–34.

[Kernighan84] Brian W. Kernighan, Rob Pike
The UNIX Programming Environment
Prentice Hall, Inc. 1984

[Kernighan88] Brian W. Kernighan, Dennis M. Ritchie
The C Programming Language
Prentice Hall, Inc. 1988

[Kluge92] Werner Kluge
The Organization of Reduction, Data Flow, and Control Flow Systems
The MIT Press 1992

[Lent89] Bogdan Lent
Dataflow Architecture for Machine Control
John Wiley & Sons Inc. 1989

[Lidie02] Stephen Lidie & Nancy Walsh
Mastering Perl/Tk
O'Reilly 2002

[McKeeman70] William Marshall McKeenan et al
A Compiler Genrator
Prentice Hall, Englewood Cliffs, NJ, 1970

[Phister63] Montgomery Phister, Jr.
Logical design of digital computers
John Wiley & Sons, Inc. 1963

[Sharp85] John A. Sharp
Data flow computing
Ellis Horwood Limited 1985

[Sparkes72] John Sparkes, Ed.
The Heart of Computers
The Open University Press 1972

[Srinivasan97] Sriram Srinivasan
Advanced Perl Programming
O'Reilly 1997

[Wall00] Larry Wall, Tom Christiansen & Jon Orwant
Programming Perl
O'Reilly 2000

[Walsh99] Nancy Walsh
Learning Perl/Tk
O'Reilly 1999

[Wulff72] John E. Wulff
A Monitor for Real-Time-Control Systems
University of New South Wales 1972

59

11 The Author

John E. Wulff studied Electrical Engineering at the University of New South Wales in Sydney, Australia
graduating in 1960. His first professional experience was in the Telephone industry, developing
switching circuits with electro-mechanical relays but also with vacuum tubes, cold cathode tubes and
very soon with the emerging transistors. In 1964 he spent 6 months in England, getting know-how on a
new family of switching circuits using germanium diodes and transistors, but which already supported
clocked flip-flops. These had been developed at the BICC research laboratory near Hampton Court,
where John Sparkes had invented the principle of clocking a few years earlier. With this experience,
John Wulff was chief designer for a special purpose computer with 100 kilobytes of magnetic drum
memory, 1 million transistors, 2.5 million diodes for logic and 100,000 silicon controlled rectifiers for
power output drivers, switching 24 Volt rotary solenoids drawing up to 5 Amps. This computer
controlled a letter sorting system with 150 input consoles and a throughput of 5 million letters a day.
The system worked reliably for 25 years at the Redfern Mail Exchange in Sydney.

Experience with logic design based on integrated circuits followed. The availability of mini computers
led to an interest in programming. A Master of Engineering Science Degree in Information Science at
the University of New South Wales provided a solid foundation for future work as a Software Engineer.
The design and implementation of a Real Time Operating System (or Monitor, as it was then called) on
a PDP-8, which provided a task context switch in 15 machine instructions was the content of his
Masters Thesis [Wulff72], and later provided the basis for some very fast industrial machine control
systems with Data General Nova mini-computers, whose instruction execution time was 6
microseconds.

In the mid 80's John Wulff came in contact with PLC's. He was asked to help during the commissioning
of a PLC-system, controlling a parcel sorting complex consisting of 100 standard conveyor systems
and 4 high speed conveyors (2 metres/second) which had mechanical gates along their length, to
divert parcels. The gates on these high speed belts needed a control resolution of 15 milliseconds, in
which time a parcel had moved 30 mm. Unfortunately the function blocks for the 100 standard
conveyors, whose outputs hardly ever changed once they were started, had to be executed 100 times
each cycle, once for each conveyor. Because PLC's execute all their instructions over and over, this
brought the total cycle time to over 1 second!! What to do? Fortunately the PLC had just enough (8)
interrupt inputs, to allow the implementation of an event driven sub-system using the assembler
instructions of the PLC. This saved the company a lot of liquidated damages.

That experience spawned the idea for an event driven PLC, which resulted in the current iC system.
The design was very much influenced by thinking about biological neural networks in the brain. How is
it possible that such relatively slow components as neurons and synapses can process such vast
amounts of information at the speed that they do? The algorithms at the heart of the iC system are
based directly on synapses and biological neural networks - not for artificial learning, but simply to gain
speed. iC is orders of magnitude faster than a PLC with the same speed for any reasonable application
one can think of. I was programming the firmware of conventional PLC's for a manufacturer at the time
(1989). The IEC-1131 standard with its new language 'Structured Text' had just been published.
immediate C is simply not compatible with Structured Text, which relies on the cyclic model of PLC's,
although iC is fully compatible with Ladder Logic. For that reason immediate C was never accepted by
industry.

In 2013 the iC system was ported to the Raspberry Pi running under Raspbian Linux. This computer is
slow by current standards (700 MHz), but its size and I/O capabilities make it an ideal platform for
immediate C. A number of drivers have already been written for real I/O devices connected to the
Raspberry Pi (PiFace, PiFaceCAD with others to follow).

The complete system has been published under the Open Source GPL License. With the current
emphasis on Linux in embedded Systems, I see great scope here for control systems based on the
GPIO I/Os and other peripherals of the Raspberry PI and other similar powerful micro-processors
using the language immediate C.

John E. Wulff, BE, M EngSc – Bowen Mountain, Australia.

60

Appendix A README

immediate C, iC rev icc_3.6

Copyright © 1985-2021 John E Wulff

SPDX-License-Identifier: GPL-2.0+ OR Artistic-1.0

Acknowledgments to Larry Wall, whose README I used as
a template. - and for Perl - which is just GREAT.

Acknowledgments to Nick Ing-Simmons for Perl/Tk
- which is SMOOTH.

Acknowledgments to Sriram Srinivasan for Msg.pm
- which is COOL.

Acknowledgments to the developers of GTKWave
- which is POWERFUL.

Acknowledgments to Linus Torvalds and the Open-Source
community - for Linux(R) - which is SOMETHING ELSE.

--

Notes for the installation of iC rev icc_3.6

0) Pre-requisites. You need the following on your system:

C compiler # tested with gcc, Clang
bison or yacc # to translate the grammar
flex or lex
Perl, Perl/Tk # to build and run iC applications
Time::HiRes

1) To start with immediate C, clone the whole GIT repository
from https://github.com/JohnWulff/immediatec.git OR
download the ZIP file of the latest release from the same
GitHub site and unzip it.

cd immediatec/src

2) Execute the following:

configure OR
./configure # it helps to put . in your PATH

sudo m -I # do once as SU

 this executes chmod +s /usr/bin/install /usr/bin/ranlib
 to allow running make install as an ordinary user

 To make a Debug version (and install it) do

m -clS OR m -clSi # makes the following

 immcc # the iC to C compiler
 libict.a # the static run-time library
 libict.so # the dynamic run-time library

For a regression test (with the debug version) do

make test # should output 'test OK'

 Note: for the release version .ini files don't match

3) To make a Release version do

make OR
make quiet # to suppress intermediate output

4) To install immcc, libraries and scripts do

sudo make install ### SU Password required ###

This copies the executables to /usr/local/bin, the include
file icg.h to /usr/local/include, libict.a, libict.so to /usr/local/lib
or /usr/local/lib64 and Msg.pm to /usr/lib/perl5/site...

sudo make uninstall # remove all these files

5) To use the Perl support programs, it is mandatory that
you install the Perl packages Tk804.029 or later and
Time::HiRes unless they are alreadys installed on your
system. Both can be found on the internet.

6) To build and run the iC application 'hello.ic' do

iClive hello.ic # starts the IDE with hello.ic
press [Build] / Build executable

displays 'hello' successfully built
press [Run] # opens iCbox with 1 button IX0.0
press button IX0.0 # button turns HI (input is green)

'Hello! world' is output in the
window iClive was started from

press [Live] # The word IX0.0 (the only
immediate variable in hello.ic is
coloured yellow/red, because
IX0.0 is HI.

press button IX0.0 # button turns LO (input is grey)

live display changes to
green/black, indicating LO.

press [File] / Quit # 'hello' and iCbox are terminated

7) A slightly bigger application is 'simple.ic'. Build and run it
with iClive. An iCbox with 16 inputs and 8 outputs is started
automatically. Explore the logic of the statements by
changing inputs and following the outputs in iCbox and the
live display in iClive.

8) The application 'bar.ic' uses flip flops to produce a bar of
running lights. The application also explores the use of
programmable time delays, giving some idea of the scope of
the iC language.

Running 'iClive bar.ic' as a separate process, while 'bar' is
running will display the source file in the edit window,
connects to iCserver as an auxiliary client to receive updates
of all variables from the running iC program (bar). In 'Live'
mode these updates will change the colours of all words
which are immediate variables. This 'Live display' shows the
current state of logical relationships in visible statements of
the iC program as green/black = 0, yellow/red = 1. Arithmetic
variables are blue and their value can be displayed in a
balloon, when the cursor rests on the variable.

In 'Live' mode, when a 'live display' is shown, the text is read
only. When the 'Edit' button is pressed 'iClive' is a full
featured editor. The edit facilities of this program are
described in the iClive man page under the Heading
'KEYBOARD BINDINGS' (press Help button in 'iClive').

'iClive' can use the Tk::TextUndo package, an extension of
Tk::Text. This allows undoing changes with the Ctrl-u key.
(Control-u is <<Undo>>) This is achieved by starting iClive
with the -u option. Use this option only for editing. In 'Live'
mode the display is very jerky with -u active.

9) iCserver distributes TCP/IP messages between iC apps
and iC real and virtual I/O drivers. It is started automatically
by any iC app or driver unless it is already running. iCserver
can be started manually in another window to have more
control over the iC network configuration with real inputs.

10) iCserver is usually started with the -a (auto-vivify) option,
which will start a simulated I/O iCbox for every input and
output, every time an iC application is started. Otherwise
these must be started manually, which can be tedious for
large applications.

iCserver -a & # auto-vivify iCbox for application
simple # starts iCbox with 3 sets of I/O

If iClive is started first, it does all this automatically. It then
stops iCserver automatically when it quits. When iCserver
stops it stops all registered applications and I/O's.

11) iC applications can of course be run without iClive. They
do need iCserver though, which every app starts
automatically in auto-vivify mode unless it is already running.

hello OR # start hello + iCserver -ak + iCbox
hello -l # additionally start iClive
type q # to stop hello, iCserver and iCbox

12) Bernstein chaining. If several different iC applications, or
different instances of the same application are to be started
together, their initialisation sequences must be run
sequentially, but after that they must all run in parallel as
separate processes (and in parallel with iCserver, iCbox and
iClive). This is difficult to achieve with shell commands.

THESE DO NOT WORK!

bar; bar -i1 # does not start bar -i1 until bar stops

bar &; bar -i1 # is a shell syntax error

bar & # this starts processes in parallel
bar -i1 # but initialisation sequences clash

None of these is what we want. To achieve the desired
result, Bernstein chaining has been implemented with the -R
option for every iC app and for all iC drivers.

bar -R bar -i1 # starts bar and bar -i1 with well
sequenced initialisation
and then in parallel

https://github.com/JohnWulff/immediatec.git

61

bar -l -R bar -i1 -R bar -i2 -R bar -i3
starts:

iCserver -z -ak
iClive bar.ic # from -l
bar -z -i1 -R bar -i2 -R bar -i3
bar -z -i2 -R bar -i3
bar -z -i3

by auto-vivification iCserver starts:

iCbox X0 B1 X2 # for bar
iCbox X0-1 B1-1 X2-1 # for bar -i1
iCbox X0-2 B1-2 X2-2 # for bar -i2
iCbox X0-3 B1-3 X2-3 # for bar -i3

Only the first app in the chain has keyboard input. It can be
stopped by typing 'q'. This in turn stops iCserver, which
stops all other apps in the chain. (-z blocks keyboard input
for all chained apps).

Chaining is important for driver calls with real I/O arguments.

13) A reasonably large iC app controlling 'iClift' shows the full
power of iC.

iClift, a Perl/Tk GUI, is a simulation of the physics and
appearance of lifts in a building with IEC inputs sent to an iC
control application from simulated sensors and buttons and
using IEC outputs received from an iC control application to
initiate and stop simulated movement and to reset buttons
and activate indicators.

iClift -e # run iClift with the default 1 Lift and
3 Floors and execute a matching iC
control program

iClift -L2 -F5 -l # run iClift with 2 lifts and
5 Floors and execute a matching iC
control program and open iClive

With any configuration of lifts, you can call lifts to any floor
and then use the column of buttons to send the lift to another
floor as well as being able to open and close doors.
Pressing the [C] button at the top left starts continuous
testing. Adding the -d option to the above calls will start a
monitoring iCbox, which shows the state of all the IEC
signals passing from iClift to the iC control program and
back. These signals as well as all internal variables of the
control program can be monitored in the iClive display with
the [Live] button pressed.

14) Another powerful debugging tool is the GTKWave Wave
Analyzer.

GTKWave (an open-source program) is an
analysis tool originally intended to perform
debugging on Verilog or VHDL simulation models.
With the exception of interactive VCD viewing, it is
not intended to run interactively with simulation,
but instead relies on a post-mortem approach
through the use of dumpfiles. Various dumpfile
formats are supported: VCD: Value Change Dump.
This is an industry standard file format generated
by most Verilog simulators and is specified in
IEEE-1364. (Extract from the GTKWave 3.3 Wave
Analyzer User's Guide) Use in the iC system is
hereby gratefully acknowledged.

gtkwave-3.1.10-4.33.i586.rpm was downloaded from the
internet. To install gtkwave on OpenSUSE Linux do:

sudo rpm -i gtkwave-3.1.10-4.33.i586.rpm

For other Linux distributions download and follow the
instructions in the internet to install GTKWave for those
systems.

Since version 1.131 of the iC run-time a VCD file and an
associated SAV file is generated by an iC application when
run with the -v option. This allows the interactive or post-
mortem viewing of both logic and analog traces against a
virtual time scale. This time scale was chosen so that each
sequential change in any signal is 1 virtual microsecond.
iClock cycles take up 2 virtual microseconds. Each new
external input (Ixn.m, IBn, IWn ILn or TX0.m) occurs on the
next 10 virtual microsecond boundary. To test this do:

simple -v simple.vcd
writes simple.vcd and simple.sav

press IX0.0 to IX0.7 in iCbox one
after the other to turn them on

then press IX0.0 to IX0.7 one after
the other to turn them off again

type q # stop simple, iCserver, iCbox. This
writes simple.vcd and simple.sav

gtkwave simple.vcd simple.sav # displays timing
for all non-extended variables

A more detailed example uses the running of 'bar -v bar.vcd'
shown in the iC manual iC.pdf and barx.sav, which is in the
distribution and which shows extra extended gates and
markers used in the description in the manual. barx.sav was
generated by first running gtkwave bar.vcd bar.sav - inserting
extended variables from modules, setting markers and then
saving as barx.sav.

gtkwave bar.vcd barx.sav
display some extended variables

15) I have included a script called 'iCstop' from my private
toolkit. It can be used effectively to kill iCserver when it is
executing in the background, which is appropriate for a
server.

iCserver &

iCstop iCserver # local copy of 'iCstop'

16) To make executable applications from iC sources, use
the script iCmake. iCmake is a shell script to compile iC
sources into C sources using the 'immcc' compiler. These in
turn are compiled and linked into an executable iC
applications (currently using gcc - this can be changed).
Various options allow partial compilation and generation of
listings.

iCmake -h OR iCman iCmake # gives a lot of help

17) The LibreOffice 3.3.1 document doc/iC.odt (or doc/iC.pdf)
is the Reference Manual for the iC Programming Language.
It opens the way to use "immediate C" fully.

18) There is a generous help output for every tool in the 'iC
Project' initiated with the -h option. Each generated iC
application also has two help outputs:

hello -h # list available common options

hello --h # extra app specific help

The common options shown in the help output explain how to
connect to iCserver on another computer in a LAN with the -s
option or with a different port number with -p. Very detailed
debugging output, showing the change of state of every
event in the system is available for the Debug version of the
iC system with -t. (Suppressed for Release version)

Extra options and help output specific to a particular iC app
can be inserted in the C function

int iCbegin(int argc, char **argv);

in a literal block of your iC source (see rfid.ic for help).

19) There are 'man' pages for all the tools used in the 'iC
Project'. These can be viewed with the normal 'man'
command under Linux or with 'iCman'. The man page viewer
'iCman' has some nifty web-browser features to view and
search man pages - try it with 'iCman iCman'.

Lots of success

$Id: README 1.34 2021-04-18 John E Wulff $

Main development is on openSUSE (Leap 15.2) and perlTk
Tk804.034, which provides fast live updates in iClive. They
seem to be as fast as with Tk800.24. A Test with Knoppix
and Tk804.25, which is still available for Debian also
provided good performance with fast live updates in iClive.

In Sept 2013 I ported immediate C to the Raspberry Pi
running Raspbian. There were no problems, except the gcc
ARM compiler defaults to 'unsigned char'. Since the core of
the iC system is based on signed arithmetic with char's, I had
to change the declaration of those to 'signed char'. The
following packages had to be installed with sudo apt-get
install: perl-tk, bison and flex. The following packages are
optional but useful: git, gtkwave and vim. (2 weeks with an
old vi from the Raspbian distribution was punishment
enough). After that all tests passed.

During 2014 I wrote drivers for direct I/O for the PiFace and
PiFaceCAD digital interfaces for the Raspberry Pi - see man
page for iCpiFace and README.Rpi.

62

Appendix B README.RPi

Raspberry Pi Development and Run-time Environment

For building the immediate C system on a Raspberry Pi, the
development environment for the Raspbian distribution of
Linux is just as powerful as for Linux on a PC. It natively
supports gcc 4.6.3 and perl 5.14. For the iC system Perl/Tk,
bison and flex are also required. All of these tools are
available with apt-get. I also rely on vim for writing and
maintaining code, ddd for debugging, GTKWave for
visualizing and GIT for source code control. These are also
available for the Raspberry Pi.

The iC system consists of the immediate C compiler 'immcc',
the static library 'libict.a', which has debugging support and
the shared library 'libict.so', which does not. On top of this
are the Raspberry Pi specific I/O drivers iCpiFace,
iCpiPWM and iCtherm. The 'immcc' compiler has no
Raspberry Pi specific code. The libraries have driver
extensions which are optionally compiled if an armv CPU is
used. To build the various components 'make' must be called
with different options. The auxiliary script 'makeAll' looks
after this (see the 'makeAll' man page). 'makeAll' tests which
processor it is running on and defines RASPBERRYPI if it
runs on an armv CPU. This means the calls to make are
identical on all processors (currently x86_64, armv6l and
armv7l) The Makefile also looks after storing the libraries in
the correct directory - /usr/local/lib or /usr/local/lib64 for 64 bit
processors. To make things even easier the script 'm' builds
various versions very simply. (I used to have a colleague
who found 'make' too long to type).

m # build immcc and libict.a with debugging support
m -cl # same as m
m -clS # also build the shared library without debugging
m -P # build the I/O program iCpiFace and iCgpioPUD
m -i # build immcc and libict.a and install everything
m -clSi # build and install everything

On top of this all iC programs have to be re-compiled if
'immcc' has been modified or simply re-linked if only the
libraries have changed. The script 'iCmake' looks after this.
It's arguments are one or more iC files ending in .ic (or .ica,
in which case more arguments are usually needed).

iCmake -sA *.ic
re-link all iC files in the current directory with the
static library libict.a for debugging
the -A switch shows ALIASES as live data in iClive

iCmake -f *.ic
force re-linking with the shared library libict.so

It may be worthwhile mentioning at this point, that the iC
apps behaved very strangely when I did a complete 'apt-get
dist-upgrade' recently. Everything worked again when I re-
linked everything to the upgraded system libraries.

Build times of the complete iC compiler as well as static and
shared libraries on the RPi B and B+ versions, which have
an ARM6 processor running at 700 MHz and 500 Mbytes of
memory, are 3 min 50 sec (230 seconds).

Build time for the RPi 2B version, which has a four core
ARM7 processor running at 800 MHz and 1 Gbyte of
memory, is 1 min 14 sec (74 seconds).

My development machine is a Compaq Presario CQ57 with a
two core Intel Pentium CPU 8940 (x86_64) running at 2.0
GHz with 4 Gbytes of memory running openSUSE 13.1
Linux. It runs gcc 4.8.1 and perl 5.18.

Build time for the Compaq PC is 10.8 seconds, which makes
a ratio of 21-7-1 for the 3 machines. Execution times for
'make test' times for the 3 machines are 330 seconds, 117
seconds and 17.9 seconds respectively, which is a ratio of
18.5-6.5-1, which is similar.

The build times mentioned above are for a complete
distribution clean followed by compiling the iC and C yacc
files and a lex file followed by 31 C compiles and 3 link
compiles. Also 14 man page files are re-compiled from POD-
text attached directly to the relevant sources. All relevant
files are also installed. During normal development only one
or a few files are recompiled, which only takes seconds,
even on the slow RPi B.

I have written, compiled and debugged all the RPi specific
drivers on a RPi B connected via ssh -X to a number of
console windows on the Compaq PC. That way I get the
fastest turnaround time. The only program which does not
run well in a SSH window is ddd. It works perfectly in a
native window on the Raspberry Pi.

I also mount the central Compaq PC via nfs on each RPi.
This allows archiving of modified sources on the Compaq PC
and distributing modified files to other RPi's on the network.

The immediate C IDE program iClive is both a text editor for
writing new iC programs or for updating them as well as a
debugger for displaying the state of immediate bit, int, clock
and timer variables in real time by colour changes of the
variables in the program text or in balloon windows for
analog values. iClive also has a button for executing the
usual File operations, a button to build an iC executable, a
button to switch between different instances of the current
program, a button to switch between Edit and Live mode and
a button for a powerful search facility. The Edit window
provides a modest amount of syntax highlighting.
Nevertheless I mostly use vim for editing iC programs and
iClive only for debugging. I provide 3 files: ic.vim,
filetype.vim and wulff.vim to provide syntax highlighting for iC
files in vim. The command line tool 'iCmake' generates
executables from iC source file ending in .ic or .ica (see man
pages for more details).

The graphical program iClive and a number of other support
widgets (most importantly iCbox) run perfectly on the Linux
PC when started remotely on a RPi in a ssh -X window. This
makes testing networked iC programs on several RPi's very
easy.

Raspberry Pi Direct I/O with GPIO's

The ARM processors have GPIO signals, some of which are
brought out on the P1 connector of the Raspberry Pi boards.

The Raspberry Pi A or B brings out 17 GPIO signals on a 26
pin connector, 5 of which double up to do the SPI interface, 2
for a UART, leaving 10 for general purpose input/output
(there are 4 more on a 2nd connector, which is not normally
fitted). The Raspberry Pi B+ and 2B bring out 9 more GPIO
signals on their 40 pin connectors making a total of 19 free
GPIO pins. The Linux "sysfs" can access the value of these
GPIO pins from user space and more importantly can
generate interrupts from them.

Because GPIO pins are not buffered, great care must be
taken using them. Output voltages are 0 volts (lo) and 3.3
volts (hi) and load current is limited. A useful indicator circuit
is a low power LED connected to 3.3 volts via a 270 ohm
resistor. This can be used as an output indicator and
provides input bias and an indicator for input switches
connecting to 0 volts. For both inputs and outputs 0 volts (lo)
is the active signal when the light is on and the switch is
closed. The software drivers provided allow for this by
arranging that both outputs and inputs can be independently
active hi or active lo. (For GPIO's each bit can be
independently active hi or lo).

In iC, direct digital I/O on GPIO pins is handled by the Linux
"sysfs" and its interrupts.

For details see:
 http://elinux.org/RPi_Low-level_peripherals
 http://www.auctoris.co.uk/2012/07/19/gpio-with-sysfs-on-a-
raspberry-pi/

Other Raspberry Pi I/O drivers with GPIO's

iCpiPWM provides pulse width modulated outputs on GPIO
pins to provide pseudo analog output from 0 to 3.3 volts or to
drive Servos with 500 to 2500 us pulses at 20 ms intervals. It
also measures analog inputs using the MCP3008 8 channel
10 bit A/D converter.

iCtherm measures temperature using one or more DS18B20
1-Wire digital thermometers connected to GPIO4.

More details for both drivers can be found in the respective
man pages.

http://elinux.org/RPi_Low-level_peripherals

63

PiFace I/O extension boards

One PiFace 1 board can be plugged directly into the 26 pin
P1 connector of a RPi B board. Up to 8 Piface boards can be
connected using up to 3 PiRacks. I have tested 4 PiFace 1's
on one PiRack as well as a 40 pin PiFace 2 and 2 x PiFace
Relay+ with Relay Extra extensions together on a RPi2.

Each PiFace provides 8 bits of buffered digital output, each
of which is connected to a LED indicator and 2 of which also
drive relays with 1 changeover switch each. Each PiFace
also has 8 bits of digital input, which can be configured as
extra outputs. 4 pushbutton switches pull inputs 0 to 3 to 0
volts. All 8 outputs, the 6 wires from the contacts of the
relays and the 8 inputs are brought out to terminal blocks.

The output LED's and the relays are switched on when the
output is 0 volts, which is active lo. The way the switches
are arranged the input is also active lo for the 4 switches.
Like for GPIO's the drivers can select either active hi or
active lo (for PiFaces all 8 outputs and independently all 8
inputs may be configured to be active hi or lo).

PiFaceCAD I/O extension board

One PiFaceCAD board can be plugged directly into the 26
pin P1 connector of a RPi B board or into the top connector
of a PiRack together with PiFaces.

The PiFaceCAD uses output to control a 16 x 2 LCD
character display. It also has 6 pushbutton switches and 1
changeover switch, which connect to 0 volts when activated.
The inputs are not brought out to a terminal block.

RPi Drivers for GPIO's, PiFaces and a PiFaceCAD

Because the iC system is geared to using interrupts to get
immediate response from inputs, a common driver is
preferable to handle interrupts via a single select() call.

Two versions of the driver have been implemented. The
simplest is a program called iCpiFace, which takes input and
sends output to GPIO's, PiFaces and a PiFaceCAD from
data transmitted to the app by TCP/IP messages transmitted
to and from an iC app via iCserver. This program can also be
called by the alternative name iCpiGPIO, in which case only
GPIO's are handled.

(The numbers at the boundaries of the three boxes
are iCserver channel numbers)

The advantage of iCpiFace is, that iC apps are compiled and
linked without regard to where the data originates. The
disadvantage is, that I/O speeds are limited by the speed of
transmission of the TCP/IP messages and the time taken by
iCserver. On an RPi 2B a turnaround time of 1.7 ms was
measured if an input is switched on a GPIO or PiFace input
and the iC app immediately outputs it to a GPIO or PiFace
output. On an RPi B or B+ this was 5.5 ms. As can be seen
in Fig. 1, four separate TCP/IP messages and 2 delays in
iCserver are involved - iCpiFace input to iCserver - iCserver
in to out - iCserver to the iC app input - iC app output to
iCserver - iCserver in to out and iCserver to the iCpiFace
output. This speed is similar to the speed of a fast
mechanical relay and is quite useful for many control
applications. It is still faster than most PLC's.

A second version of the driver is built directly into the run-
time library linked to iC apps and is therefore much faster.
External inputs interrupt the system directly and act directly
in the iC execution network generating values, which are
transmitted directly to external outputs. Turnaround times of
90 us were measured for GPIO's on an RPi 2B (170 us on an
RPi B or B+) and 450 us for PiFaces on an RPi B. PiFaces
are a bit slower, because speed is limited by the serial
transmissions of the SPI interface.

A feature of the direct I/O in the run-time library is, that any
GPIO or PiFace I/O's, which are not called for in the iC app
the library is linked to, will be handled as TCP/IP I/O's, just
like iCpiFace. This means several iC apps can utilize GPIO
and PiFace I/O's. Of course only one app can use direct
high-speed I/O.

The command line switches and I/O arguments are
explained in detail in the iCpiFace man page and in the -h
help output for iCpiFace and each app linked to the RPi
library. These arguments are mostly identical for both
versions. Here are command line calls for the three
examples above.

1) iCpiFace -I IX0.0,18 QX0.0,24 X1:1 # OR
 iCpiFace ~IX0.0,18 ~QX0.0,24 ~X1:1 # separate inversion

all inputs and outputs active lo
IX0.0 GPIO 18 external input
QX0.0 GPIO 24 external output
IX1.0-IX1.7 external on PiFace1
QX1.0-QX1.7 external on PiFace1

 app1 # uses IX0.0, QX0.0 as well as
IX1.0 - IX1.7 and QX1.0 - QX1.7

2) app2 -I IX0.0,18 QX0.0,24 X1:1
all inputs and outputs active lo
app2 uses all inputs and outputs
IX0.0 GPIO 18 direct input
QX0.0 GPIO 24 direct output
IX1.0-IX1.7 direct on PiFace1
QX1.0-QX1.7 direct on PiFace1

3) app3 -I IX0.0,18 QX0.0,24 X1:1
all inputs and outputs active lo
app3 uses IX1.0 - IX1.7 and
QX1.0 - QX1.7 only
IX1.0-IX1.7 direct on PiFace1
QX1.0-QX1.7 direct on PiFace1
IX0.0 GPIO 18 external input
QX0.0 GPIO 24 external output

 app4 # uses IX0.0, QX0.0 only

All calls to the I/O systems have been done with active lo
inputs and outputs. This means that if a variable is '1' in the
iC app, it is 0 volts or lo at the in or output terminal, which is
appropriate for input switches connected to 0 volts and
driving LED's and relays connected to 3.3 volts. If inverting
buffers are used the calls can be adjusted appropriately.

When an app is called with only direct inputs and outputs, it
does not connect to iCserver at all, which means iClive
cannot be used with that app. To enable iClive, the app must
be called with the -L option, which connects it to iCserver
anyway and thus enabling iClive debugging. Another useful
option is -B, which causes iCpiFace and an app with direct
I/O to generate an auxiliary iCbox to monitor the direct inputs
and outputs, which otherwise are only electrical signals at
the I/O terminals.

John E. Wulff 2015.12.28 <immediateC@gmail.com>

64

Appendix C Type Definition Table
The following table defines function types and output types of Gate nodes used in the iC run-time
system. The columns 'os' and 'fos' are useful when interpreting the compiler generated listings.

Define function type Functp* Functp Functp Functp Functp
type os -gt_ini ftypes yacc token i_lists [0] [1] [2] [3]

0 UDF . UDFA YYERRC. gate_i pass1 pass2 gate3 pass4
1 ARNC - ARITH AVARC gate_i pass1 pass2 gate3 pass4
2 ARNF + ARITH YYERRC. gate_i pass1 pass2 gate3 pass4
3 ARN + ARITH YYERRC. gate_i pass1 pass2 gate3 pass4
4 LOGC ' GATE LVARC gate_i pass1 pass2 gate3 pass4
5 XOR ^ MIN_GT GATE YYERRC. gate_i pass1 pass2 gate3 pass4
6 AND & GATE YYERRC. gate_i pass1 pass2 gate3 pass4
7 OR | GATE YYERRC. gate_i pass1 pass2 gate3 pass4
8 LATCH % GATE YYERRC. gate_i pass1 pass2 gate3 pass4
9 SH * MAX_GT D_SH YYERRC. ff_i pass1 pass2 i_ff3 pass4

10 FF # D_FF YYERRC. ff_i pass1 pass2 i_ff3 pass4
11 EF / RI_BIT YYERRC. ff_i pass1 pass2 i_ff3 pass4
12 VF > CH_BIT YYERRC. ff_i pass1 pass2 i_ff3 pass4
13 SW (F_SW YYERRC. ff_i pass1 pass2 i_ff3 pass4
14 CF { F_CF YYERRC. ff_i pass1 pass2 i_ff3 pass4
15 NCONST = ARITH NUMBER ff_i pass1 pass2 i_ff3 pass4
16 INPB] OUTX YYERRC. ff_i pass1 pass2 i_ff3 pass4
17 INPW [ARITH YYERRC. ff_i pass1 pass2 i_ff3 pass4
18 INPX < TRAB YYERRC. ff_i pass1 pass2 i_ff3 pass4
19 CLK : MAX_LV CLCK YYERRC. clock_i pass1 null1 i_ff3 null1
20 TIM ! TIMR YYERRC. clock_i pass1 null1 i_ff3 null1
21 ALIAS @ MAX_OP GATE YYERRC. clock_i pass1 null1 i_ff3 null1
22 ERR ? GATE YYERRC. clock_i pass1 null1 i_ff3 null1
23 KEYW ; MAX_LS 24 C TYPE 25 C W OR D 26 IFU N C T 31 TM

Define output type Functp2 Functp2 Functp2 Functp uint
ftype fos gt_fni types yacc token initAct masterAct slaveAct init2 bit2

0 UDFA U UDF UNDEF err_fn err_fn err_fn null1 0
1 ARITH A AR N /AR N C A VA R arithMa arithMa err_fn gate2 INPT_M
2 GATE MAX_AR OR /LOGC LVAR gateMa gateMa err_fn gate2 INPT_M
3 GATEX _ OR /LOGC LVAR gateMa gateMa err_fn gate2 INPT_M
4 RI_BIT E MIN_ACT EF YYERRC. link_cl riMbit riSbit i_ff2 RI_B_M
5 S_SH s SH YYERRC. link_cl sMsh sSsh i_ff2 S_SH_M
6 R_SH r SH YYERRC. link_cl rMsh rSsh i_ff2 R_SH_M
7 D_SH H SH YYERRC. dMsh dMsh dSsh i_ff2 D_SH_M
8 CH_BIT V VF YYERRC. chMbit chMbit chSbit i_ff2 CH_B_M
9 S_FF S 1001 FF YYERRC. link_cl sMff sSff i_ff2 S_FF_M

10 R_FF R 1010 FF YYERRC. link_cl rMff rSff i_ff2 R_FF_M
11 D_FF D 1011 FF YYERRC. link_cl dMff dSff i_ff2 D_FF_M
12 CH_AR v VF YYERRC. chMar chMar chSar i_ff2 CH_B_M
13 F_SW I SW YYERRC. link_cl fMsw fSsw null1 F_CW_M
14 F_CF F CF YYERRC. link_cl fMcf fScf null1 F_CF_M
15 F_CE G CF YYERRC. link_cl fMce fScf null1 F_CF_M
16 CLCK C CLK YYERRC. link_cl fMfn clockSfn i_ff2 CLCK_M
17 TIMR T TIM YYERRC. link_cl fMfn timerSfn i_ff2 TIMR_M
18 TRAB B MAX_ACT INPX YYERRC. err_fn err_fn err_fn null1 0
19 OUTW W ARN AOUT outMw outMw err_fn null1 OUTP_M
20 OUTX X AND LOUT outMx outMx err_fn null1 0
21 CLCKL : ERR CVAR err_fn err_fn err_fn null1 0
22 TIMRL ! ERR TVAR err_fn err_fn err_fn null1 0
23 F_ERR e MAX_FTY ERR YYERRC. err_fn err_fn err_fn null1 0
24 ARITH_ALIAS aA arithmetic input, arithmetic output
25 GATE_ALIAS a logic input, arithmetic output
26 GATEX_ALIAS a_ to colour names of alias nodes correctly arithmetic input, logic output
27 INV_ALIAS ~ logic input, logic output, inverted
28 INVX_ALIAS ~_ logic input, clock output
44 CLCKL_ALIAS a: logic input, timer output
45 TIMRL_ALIAS a! icc.ods 1.24 2015/06/06

 Live display
These values are only used in iClive

	Abstract
	Zusammenfassung
	Note on language change for iC version 3
	1 Introduction
	1.1 Relationship to Object Orientation
	1.2 Relationship to procedural Instruction Flow Languages
	1.3 Programmable Logic Controllers
	1.4 Relationship to Integrated Circuits
	1.5 Summary

	2 Language description
	2.1 Immediate Variables
	2.2 Immediate Types
	2.2.1 Immediate declarations
	2.2.2 extern immediate declarations

	2.3 Immediate Expressions
	2.4 Operators in immediate expressions
	2.4.1 Arithmetic and Relational Operators
	2.4.2 Bitwise integer Operators
	2.4.3 Bit Operators
	2.4.4 Logical Operators
	2.4.5 Conditional Operators
	2.4.6 Comma Operator
	2.4.7 Parentheses

	2.5 Function and macro calls
	2.6 Immediate statements
	2.6.1 Immediate Assignments
	2.6.2 The single assignment rule
	2.6.3 Aliases

	2.7 Immediate control statements
	2.7.1 Immediate conditional statement if else
	2.7.2 Immediate switch statement

	2.8 Literal blocks
	2.9 Comments
	2.10 Scope of immediate statements
	2.11 Simple Example
	2.12 Intrinsic limitations of immediate statements
	2.13 Pragmas

	3 Built-in Functions
	3.1 Unclocked flip-flop or LATCH
	3.2 FORCE function
	3.3 Clocked D flip-flop
	3.4 Clocked SR flip-flop
	3.5 Clocked JK flip-flop
	3.6 Clocked SRX flip-flop
	3.7 D flip-flop with Set and Reset
	3.8 Mono-Flop ST(set, timer, delay) or SRT(set, reset, timer, delay)
	3.9 Sample and Hold
	3.10 Sample and Hold with Set and Reset
	3.11 Edge detectors

	4 Clock Signals
	4.1 Built-in immediate clock
	4.2 CLOCK function
	4.3 TIMER function
	4.4 TIMER1 function

	5 Inputs and Outputs
	5.1 Built-in Inputs
	5.1.1 iClock
	5.1.2 Timing and miscellaneous inputs

	5.2 External Inputs and Outputs
	5.2.1 Digital inputs
	5.2.2 Digital outputs
	5.2.3 Analog inputs
	5.2.4 Analog outputs

	6 User defined immediate Function Blocks
	6.1 immediate Function Block Definition
	6.2 immediate Function Block Call

	7 Arrays
	7.1 Immediate Arrays
	7.2 Use of immediate Arrays
	7.3 Implementation of immediate Arrays
	7.3.1 FOR loops
	7.3.2 IF ELSE control statements
	7.3.3 Index expressions
	7.3.4 immediate Array syntax

	7.4 immac Macro facility
	7.5 Differences between iC and iCa code
	7.6 immC Arrays
	7.7 Parcel Sorter

	8 The iC run-time model
	8.1 Combinatorial immediate actions
	8.2 Clocked immediate actions
	8.3 Output actions
	8.4 Input actions
	8.5 Input/Output network

	9 Compiler and Run-time system
	9.1 Compiler
	9.2 Run-time libraries
	9.3 Run-time environment and system
	9.3.1 iCbox, iClive and iCman in action

	9.4 GTKWave Wave Analyzer

	10 Bibliography
	11 The Author
	Appendix A README
	Appendix B README.RPi
	Appendix C Type Definition Table

