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Preface

immediate C (iC) is a new programming language and more specifically a new style of language, which
programmers will not be so familiar with. It is declarative, which means that it declares the relationship
between variables, which will be forced to be up to date by the run time system and not by following an
imperative sequence of instructions.  iC is not purely  declarative, because it allows the execution of
snippets of pure  C code on certain conditions. Such languages are called  hybrid – one example is
yacc, which specifies a context free grammar declaratively, but includes code snippets from a host
language, which is usually imperative (such as  C). The structure of  yacc code has been used as a
model in the design of iC, which is compiled into pure C code by a pre-compiler, just like yacc. A fast
executable is made by compiling and linking the generated C code. The iC language uses the syntax
of C both for its declarative statements by giving meaning to statements that have no semantic support
in  C and obviously for its embedded  C statements. This should make it  very easy to learn  iC for
anyone familiar with C or its derivatives C++ or Java.  The only parts which may be unfamiliar to
programmers are the functionality and use of some of the built-in function blocks. These are based on
the well known family of TTL hardware building blocks for creating hardware digital and analog circuits,
which will be described in detail in this manual.

iC is similar to Hardware Description Languages (HDL), but it is aimed at generating fast executables
on  any  computer  capable  of  running  C and  not for  designing  hardware.  It  is  also  similar  to
Programmable Logic Controller (PLC) languages, but it does not require specialised PLC hardware
and is much faster than PLCs.  iC is a simple language, which is based on the same concepts as
logical  and  analog  IC  circuits,  electromechanical  relays,  operational  amplifiers  and  is  capable  of
building control systems by combining the equivalents of such elements with real inputs and outputs
from the “Internet of Things”. 

Since immediate C is an extension of C, in a similar way that C++ is in extension of C, using the same
declaration syntax, same operators and similar variables as C, this manual does not cover any details
which are the same as in  C. This manual concentrates on explaining the differences – mainly how
immediate variables carry forward event information with immediate expressions. 

An iC program consists mostly of a series of logical and arithmetic immediate expressions, which are
assigned to outputs or intermediate variables or are used in function block calls. Each such expression
declares the  relationship  between  some  inputs  and  an  output.  immediate expressions  are  not
executed in sequence as is the case for all instruction flow languages but only when an input to one of
the expressions changes. The fundamental thesis for iC is, that  the output of an expression does
not change if none of its inputs change and therefore does not need to be executed until one of its
inputs does change – but then it should be executed immediately (at least as soon as possible).

I have often been asked what can you do with immediate C? The short answer is: 

• Any programming task which involve logical or analog events, which are related to express
actions, which are also events, to act on the environment or on other programs.

More specific uses are:

• Embedded control programs. Since the language was originally developed to be a faster PLC
with negligible CPU loading, one of the primary uses of iC is for controlling machines, robots
and home environments, in other words any activities in the “Internet of Things”.  With the
advent  of  small  but  powerful  micro  computers  like  the Raspberry  Pi  it  is  possible  to  run
embedded control  programs written in  iC using hardware GPIOs and other peripherals  to
provide physical input and output. I/O drivers for the Raspberry Pi come with the system.

• Logic support for GUIs. Wikepedia defines a GUI is a type of interface that allows users to
interact with electronic devices through graphical icons and visual indicators. With iC only the
output  of  individual  icons  need  to  be  turned  into  events,  which  are  transmitted  to  iC
executables as standardised I/O messages.  The indicator actions are handled similarly by
event messages received from iC executables. The GUI thus reduces to a graphics wrapper,
with iC handling all the logic of the application, which is much easier to express in iC than in a
regular instruction flow language such as C or Python, which require an event loop with much
overhead and poor performance.

• Gaming programs. Such programs are essentially GUIs, where event generating entities and
display  indicators  are  hidden  in  lifelike  simulations.  In  particular  the  inputs  from  gaming
consoles must be captured by a suitable driver  and movements of  figures and shifts and
rotations of the display must be tied to logical or analog messages received from iC. But the
program of the gaming graphics can be limited to such motions, with the internal logic of the
game delegated to an iC program.
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The main target for  iC programs is for real I/O or for interacting with graphical wrapper programs.
Nevertheless  a  simulated  I/O  program  iCbox has  been  provided  for  testing  iC programs  in  an
environment without any real I/O. That way users will be able to run iC programs immediately to learn
the language and test ideas. Also provided is  iClive, an Integrated Development Environment (IDE)
coupled with a live display debugger. iClive can be used to enter program text, build an executable and
run that executable while showing the state of all displayed variables with different colours. Watch
points  allow breaks  in  program execution  for  debugging.  Of  course  iC program sources  can  be
generated with any editor. Syntax high lighting for iC has been provided for vim and for printing under
Linux for a2ps.

Following the example of K&R in “The C Programming Language” this manual is organized similarly
(permission kindly granted by Brian Kernighan):

Chapter   1   is a tutorial of the central part of iC to get the reader started as quickly as possible, since the
best way to learn a new language is to write programs in it. The tutorial assumes a basic knowledge of
C,  although  much  useful  iC code  can  be  written  without  any  knowledge  of  much  of  C except
expression and assignment elements common to all programming languages.

Chapter   2   describes the I/O interface, which is the only unusual feature of the language. A rationale for
the reasons this form was chosen is provided. It  is  covered first  because it  is  so central  to all  iC
programs.

Chapter 3 through 6 discuss various aspects of  iC in more detail, and rather more formally
than in the tutorial, although the emphasis is still on examples of complete programs rather
than isolated fragments.

Chapter 3 deals with data types additional to C, and the way operators and expressions are handled
with these new data types.

Chapter   4   treats conditional statements if-else and switch, which are not control flow statements
like in C, but rather initiate the execution of C code from iC events.

Chapter    5   covers function blocks and program structure – external variables, scope rules, multiple
source files and so on.

Chapter   6   discusses clocking, clocked built-in functions including clock generators and the generation
of delays. This is another area, which may not be familiar to most programmers, but is very important
in generating iC programs which are robust and free of timing races.

Chapter 7 discusses the iC pre-processor immac, which handles macros like the C pre-processor, but
whose main function is  to  generate  blocks  of  iC code for  arrays  of  iC variables.  This  allows the
generation of different versions of similar iC programs from the same source, where the size of arrays
is declared in the command line at compile time.

Chapter 8 fully describes iClive, the IDE and debugger for iC.

Chapter   9   discusses virtual and real I/O drivers and how these are integrated into a complete network
with compiled iC applications via a common server called iCserver.

Chapter 10 shows and discusses the iC code of a full length control program for a physical elevator
system built from Meccano parts, which has all the motors, buttons and indicators of a real elevator
system. The program takes care of queuing and servicing floor requests correctly.

I cannot do better than follow the lead of Brian W. Kernighan and Dennis M. Ritchie in their book “The
C Programming Language” and use that book as a template for this manual with direct quotes where
appropriate.  Their  influence  has  been  very  important  in  designing  iC and  is  hereby  gratefully
acknowledged. 

Another  strong  influence  has  been  “The  UNIX  Programming  Environment”  again  by  Brian  W.
Kernighan with Rob Pike. That book taught me the UNIX way of developing programs and how to write
compilers with yacc – building up such a hard topic in easy and exciting steps. 

Larry Wall taught me a lot about the linguistic nature of programming languages – making sure they
flow easily out of your thoughts. I used that influence in small ways, for example – allowing commas at
the end of all comma separated lists, which makes writing long parameter lists vertically so much
easier. I use Perl for all the auxiliary programs around iC, because Perl is flexible and makes robust
programs. Sriram Srinivasan taught me the Foundations and Techniques for developing  robust Perl
Applications in his book “Advanced Perl Programming”. Nancy Walsh and later Steve Lidie opened the
way to “Mastering Perl/Tk”, developed originally by Nick Ing-Simmons, which generates stable widgets.

I extend my thanks to all these authors and developers. John E. Wulff
Bowen Mountain, Australia
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1    A Tutorial Introduction

As K&R say in “The C Programming Language” let us begin with a quick introduction to iC. The aim is
to show essential elements of the language in real programs, but without getting bogged down in
details, rules, and exceptions. At this point, I am not trying to be complete or even precise (save that
the examples are meant to be correct). I want to get you as quickly as possible to the point where you
can write useful programs, and to do that I have to concentrate on the basics: variables and constants,
logic and arithmetic, conditionals and the rudiments of input and output.

1.1  Getting started
The only way to learn a new programming language is by writing programs in it. The first program to
write is the same for all languages:

Print the words

hello, world

in iC this is a two line program:

%{ #include <stdio.h> %}
if (IX0.0) { printf("hello, world\n"); }

Create this program in a file ending in ".ic", such as hello.ic.

To build this program type the command

$ iCmake hello.ic

which in turn calls the immediate C compiler immcc and  the C compiler and linker gcc to produce the
executable file hello. If you run the command

$ hello

the iC run time system will generate (auto-vivify) a small simulated I/O box with a single
button labelled .0 in a column labelled IX0. Every time you turn the button IX0.0 on (HI)
with the left mouse button, the program will print 

hello, world 

The same would happen if you had a real input IX0.0. Type q to quit the program.

Unlike in C, the iC code is not placed in C style functions, but is placed where one would
normally have global variables. Each iC statement is executed when one of the iC variables
making up the statement changes. In the program  hello.ic a change of state of the
external  variable  IX0.0  in  the  if  statement  triggers  the  execution  of  the  printf
function call, which is pure  C code. The  C code must be enclosed in braces, which are
mandatory for iC to define a block of C code. The block of C code immediately after the if
condition in braces is executed every time the condition changes state from LO to HI. 

The  first  line  of  the  program   hello.ic  is  a  block  of  C code  enclosed  in  special  braces
 %{ ... %}, which is called a Literal Block. These blocks are copied nearly verbatim, but without the
special braces, to the generated  C code ahead of any  C code embedded in  iC statements, like the
printf call above. (This way of declaring and using Literal Blocks was taken over directly from yacc).
Literal Blocks are useful for declaring C variables, declaring or defining auxiliary C functions, defining C
pre-processor macros with #define and including C header files with #include. 

The Literal Block %{ #include <stdio.h> %} is required by C in this case to declare the function
prototype of the printf function in the C standard I/O library. 

If you also want to have an output when you turn the button IX0.0 off (LO) extend the if statement
with an else followed by another block of C code

if (IX0.0) { printf("hello, world\n"); }
      else { printf("good bye\n"); }

Exercise 1-1. Run the "hello, world" program on your system. Experiment with leaving out parts of
the program, to see what error or warning messages you get.

Exercise 1-2. Extend the program with more external  inputs  IX0.1  to  IX0.7  to print  different
messages.
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1.2  immediate Logical Expressions

The next  iC program  andOr.ic explores the use of the logical operators AND and OR to act on
external outputs  QX0.0 to QX0.3.  These statements can be placed in any order in the iC program
without changing its function.

QX0.0 = IX0.0 & IX0.1; // AND operator &
QX0.1 = IX0.2 | IX0.3; // OR operator  |
QX0.2 = IX0.4 & IX0.5 | IX0.6 & IX0.7; // & has precedence

Another way to write the last statement is:

QX0.3 = IX0.4 & IX0.5 | // AND OR in the style 
IX0.6 & IX0.7; // of PLC Ladder Logic

Allowing and encouraging this Ladder Logic like coding is deliberate and makes reviewing this common
AND/OR construct very obvious. 

The IDE iClive is an easy way to type iC sources, build executables and run them. Execute iClive and
press  File > New if  iClive was previously  working on a different  source.  Type or  copy the above
statements into the Edit window and press File > SavAs, typing andOr.ic into the Filename: box and
Save.

Now press Build > Build executable. Unless you made a typing mistake the bottom status line of iClive
will display andOr successfully built. At this point you can press the Run button, which will run the
executable andOr after auto-vivifying an iCbox for all the external I/O variables in andOr. You can now
experiment, turning various inputs  on and off to see the results in the  QX0 outputs. To activate the
debugging mode of  iClive,  press the  Live button. This  will  colour all  active  iC bit  variables in the
program green/black for 0 or LO and yellow/red for 1 or HI.

Shutting down iClive with File > Quit or the  button in the top right corner will stop andOr and close
iCbox. If you want to leave iClive running, stop  andOr with the Stop button and close iCbox manually
with its   button. Always close iCbox before running a new or modified iC program, because it may
not have the same external inputs and outputs.

Exercise 1-3. Change the statement order of  andOr.ic to see if it  makes any difference to the
output. Tip: use copy (ctrl-C) and paste (ctrl-V) with iClive in Edit mode. Use [Help] for editor details.

Exercise 1-4. Extend the logical expressions with more inputs. Tip: the next lot of inputs are IX1.0
to IX1.7. Similarly the next outputs are QX1.0 to QX1.7.

Exercise 1-5. Add more  complicated  logical  expressions  using  parentheses  for  OR expressions
nested in AND expressions because of precedence – just like in C.
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1.3  immediate Variables and Arithmetic Expressions

The next program uses the formula °F = ((°C*9)/5)+32 to convert an external analog input representing
°Celsius to an analog output representing °Fahrenheit. Additionally an output  tooHigh will be turned
on if the temperature exceeds 25°C.

Just like in C, all variables in iC should be declared before they are used, except external I/O variables,
which follow the IEC-1131 industry standard. IEC-1131 input names start with the letter I, IEC-1131
outputs with the letter Q. These are the only immediate variables we have used up to now. They will be
explained  in  detail  in  section  2. For  all  other  immediate variables  a  declaration announces  the
properties of variables and reserves storage for them; in iC an immediate variable declaration usually
starts with the type modifier imm, a type name and a list of variables, such as

imm int celsius, fahr;
imm bit tooHigh;

The only  immediate value  types  available  in iC are  imm bit  and  imm int.  Type  imm bit
declares variables capable of holding the values 0 or LO and 1 or HI only. The words boolean,
false and true were avoided deliberately, because they have a different semantic bias in languages
where  they are used (truth of a test rather than a single bit object).  Type imm int hold numeric
signed integers in the normal C way.

Assignment statements in which the right hand side is a single variable is an alias in iC.  (An alias is
simply an alternate name for the same object).  Aliases are particularly useful for giving meaningful
names to external input and output IEC-1131 variables as shown in the following code: 

This is the full program cf.ic

/* Convert and display °C to °F and turn on a tooHigh indicator */

imm int celsius, fahr;
imm bit tooHigh;

/* Alias statements which define external inputs and outputs */
celsius = IB1; // celsius =
QB1     = fahr; // fahr    =
QX0.0   = tooHigh;

fahr    = ((celsius*9)/5)+32; // correct order of mult and div
tooHigh = celsius > 25;

Build and run cf, which produces the following output with Live mode enabled

iC supports both   /* C style comments */   and   // C++ style comments

Both styles have been used in the previous examples. A very special C++ comment has been used in
the following two lines 

celsius = IB1; // celsius =
QB1     = fahr; // fahr    =

Inside a comment an imm int variable name followed by an equal sign = at the very end of the line
will cause  iClive to display the numeric value of the variable in  live mode. Apart from this  imm int
variables are coloured light blue to distinguish them from imm bit variables. The lettering is black for
a value of 0 and  red otherwise. The current numeric value of all  immediate variables can also be
displayed in a balloon by hovering the mouse cursor over a live immediate variable.

Care must be taken with  integer arithmetic  that multiplications are done before division.  Thus the
following conversion statement will give misleading results
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fahr    = ((celsius/5)*9)+32; // incorrect order of mult and div

That expression will give the same result of 77 for all  celsius values from 25 to 29.  immediate
floating point variables have not been implemented in iC, although they would be possible. C floating
point variables can be used effectively in C code embedded in iC code.

The final statement

tooHigh = celsius > 25;

demonstrates that an arithmetic relation  normally  produces an  imm bit result.  Apart from that an
arithmetic expression may be assigned to an  imm bit variable and a logical expression may be
assigned to an imm int variable. Sensible conversions are done both ways.

Exercise 1-6. Add another output tooLow which turns on when the temperature falls below 21°C.

Exercise 1-7. Take  the  comparison  temperature  for  the  indicators  tooHigh and  tooLow from
another external input and call it setTemp. Use setTemp ± 2 to compare for tooHigh and tooLow.

1.4  Logical inversion
The unary operator ~ is used in C for the bitwise complement of an integer variable. It is used in iC for
the same purpose on imm int variables and for logical inversion of imm bit variables, although in
practice it is much more commonly used for the latter in iC.

The following program urn.ic uses comparisons between integer variables as we have seen in the
last  example,  which return  a  bit  value and logical  AND expressions  with  normal  and inverted bit
variables. Many immediate C control programs follow this simple pattern.

/********************************************************************
 *  Control program for a simple urn to provide boiling water
 *
 *  Inputs are an on/off switch, water level and temperature sensor.
 *  Outputs are an electrically operated water tap to fill the urn,
 *  a heating element and a ready light.
 *******************************************************************/

use strict;

imm bit on          = IX0.0; // on/off switch
imm int waterLevel  = IB1; // water level sensor
imm int temperature = IB2; // temperature sensor

imm bit waterLo     = waterLevel  <= 90;
imm bit tempHi      = temperature >= 100;
imm bit fill         = on & waterLo; // fill until 90% full
imm bit heat        = on & ~waterLo & ~tempHi;
imm bit ready       = on & tempHi; // ready when water boils

QX0.0 = fill;
QX0.1 = heat;
QX0.2 = ready;

The logic is straightforward, using aliases of input and output variables and intermediate variables to
implement the logic. This version of the program uses the compiler directive use strict, which is
now the default and can be left out. This forces programmers to declare every immediate variable. With
the directive  no strict all undeclared variables are assumed to be  imm bit, which can lead to
subtle errors. The following with no strict is allowed but strongly deprecated.

no strict;
waterLo = IB1 <= 90;
tempHi  = IB2 >= 100;
QX0.0   = IX0.0 & waterLo; // fill until 90% full
QX0.1   = IX0.0 & ~waterLo & ~tempHi;
QX0.2   = IX0.0 & tempHi; // heat till water boils

1.5   Symbolic Constants

The C language provides for symbolic constants with #define lines, which are processed by the C pre-
processor cpp. These are available as a matter of course in  C code embedded in literal blocks and
conditional statements. Symbolic constants are useful to hide magic numbers – it is bad practice to use
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numbers in expressions, which may change and cause problems if the same number is used in several
places.  immediate C has its own pre-processor  immac, which provides for  %define lines in  iC code
with the same syntax and functionality as #define lines in C. Nevertheless symbolic constants in iC are
better expressed by the alias mechanism making %define lines superfluous. The iC pre-processor also
handles %include <file> lines for immediate C code and conditional compilation with %if lines with all its
variations, just like the C pre-processor.  

An  immediate assignment of a numeric value or even a constant expression (which is evaluated at
compile time) is an alias of the numeric constant or evaluated constant expression, which makes it a
good symbolic constant. In the last program we could provide the following two aliases:

imm int UrnCapacity = 90; // alias of a constant
imm int BoilingPt   = 100 – 3; // provide for sensor tolerances

imm bit waterLo     = waterLevel  <= UrnCapacity;
imm bit tempHi      = temperature >= BoilingPt;

Alias statements do not generate any code in iC. They provide syntactic sugar during compilation.

1.6  Delayed execution

In the  above change to the definition of  BoilingPt we have allowed for tolerances in the water
temperature sensor, which is proper engineering practice. The program as it now stands would never
bring the water to the boil. A way to overcome this, is to keep heating the water for a short time after
the  sensor  has  indicated  it  has  reached near  boiling point  temperature.  To  do this  immediate  C
provides a mechanism to delay changes of state in logic and arithmetic signals by a given amount –
usually a certain amount of time. For logic signals the delay can be for turning on or off as follows:

imm timer t1        = TIMER(T1sec);     // timer pulse every second
imm bit delayedOn   = D(in, t1, 10);    // on delayed by 10 seconds
imm bit delayedOff  = ~D(~in, t1, 20);  // off delayed by 20 seconds

The full explanation of this mechanism will be given in section 6.6.3. For the urn program we want the
heating to continue after the tempHi sensor detects near boiling temperature, which is a turn off delay
(the turn on for heating is  ~tempHi, so the input to the turn off delay is  ~~tempHi === tempHi).
Heating will continue for 20 seconds after 97ºC has been reached.

imm bit heat        = on & ~waterLo & ~D(tempHi, t1, 20); // t1 =
imm bit ready       = on & ~heat;       // ready when water boils

Exercise 1-8. Incorporate the changes in the last two sections into the  program urn.ic Build and
Run it with  iClive. Turn  on  (IX0.0) and vary the  waterLevel  (IB1) and  temperature  (IB2)
sliders to near 100 and watch heating start and then the timer t1 counting down to 0, at which point
ready  (QX0.2) come on.

1.7  Logical Exclusive Or

As an example  we want  to  switch  a  light  on  or  off  from two different  places  –  a  very  common
arrangement in most homes, which can be implemented with switches as follows: 
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This iC statement using logical inversions has the same functionality:

light1 = sw1 & ~sw2 | ~sw1 & sw2;

The expression above is equivalent to a logical exclusive or, which expresses the above functionality
more simply as follows:

light2 = sw1 ^ sw2; // sw1 or sw2 but not both

One advantage of exclusive or is that it can be cascaded – we can easily arrange for more than two
switches to each turn on and off one light:

light3 = sw5 ^ sw6 ^ sw7 ^ sw8;

This can only be done with mechanical switches using so called cross switches:

sw6 is up, the others are down and the light is off. Any switch changing will turn the light on.

1.8  Built-in Function Blocks

Function blocks in iC serve the same purpose as functions in C. A function block provides a convenient
way  to  encapsulate  some  computation,  which  can  then  be  used  without  worrying  about  its
implementation. With properly designed function blocks, it is possible to ignore how a job is done;
knowing what is done is sufficient. iC has a number of built-in function blocks, which are defined in the
supporting run time package as pre-compiled function blocks. 

In the following program we will use the built-in function block LATCH, with the following function block
prototype: 

imm bit LATCH(bit set, bit reset);

This function block is the simplest flip flop or memory element When  set is  1 and  reset is 0 the
output of  LATCH goes to  1; when reset is  1 and  set is  0 the output of  LATCH goes to  0.  LATCH
remembers its previous state when set and reset are both 0 or when they are both 1. 

The following program aircon.ic controls an air conditioner, which has two inputs IB1 and IB2 from
external thermometers for inside and outside temperature. Another input  IB3 provides the desired
room temperature. Two bit outputs act on the air conditioner –  QX0.0, which is  0 or  LO for cooling
mode and 1 or HI for heating, and QX0.1, which turns the compressor motor on and off.  

imm int insideTemp   = IB1; // insideTemp   =
imm int outsideTemp  = IB2; // outsideTemp  =
imm int setPointTemp = IB3; // setPointTemp =

imm bit heating      = LATCH(outsideTemp < setPointTemp,
     outsideTemp > setPointTemp);

imm bit tooCold      = insideTemp < setPointTemp;
imm bit tooHot       = insideTemp > setPointTemp;
imm bit acMotorOn    = LATCH(heating & tooCold | ~heating & tooHot,

     heating & tooHot  | ~heating & tooCold);
QX0.0 = heating; // on is ac heating  off is ac cooling
QX0.1 = acMotorOn;

The first thing to do is to give meaningful names to the external inputs with alias statements, followed
by control statements, which are mostly expressions combined with the declaration of an immediate
variable. The alias statements to give meaningful names to the outputs come last. These are reversed.
IEC-1131 output names are aliases for meaningful computed variables, whereas for inputs IEC-1131
names are variables with changing values and the meaningful names are their aliases.

sw1 light1sw2

light3sw5 sw6 sw7 sw8
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An unusual aspect of the Live display is the fact that inverted variables show their logic state after
inversion. The variable  heating is displayed  HI, whereas  ~heating is displayed  LO. This makes
inspection of  live AND and OR expressions very  natural.   heating &  tooHot is  obviously  HI,
whereas  ~heating  &  tooHot is  obviously  LO.  Similar  arguments apply  to OR expressions.  All
consecutive variables in an OR expression must show the LO colour for the whole expression to be LO.

Internally  imm bit variables always have two outputs – the non-inverted or normal output and the
inverted output. There is no computational overhead in doing inversion. ~name is an inverting alias of
name. This can be used to advantage to provide better visual meaning by adding an inverting alias
cooling = ~heating to the above code (which causes no run time overhead).

imm bit cooling      = ~heating;
imm bit acMotorOn    = LATCH(heating & tooCold | cooling & tooHot,

     heating & tooHot  | cooling & tooCold);

In  the  state  shown  in  the  live  display  above,  the  outside  temperature  is  9°C  and  the  desired
temperature is 20°C, which calls for heating, which is provided by the first LATCH call, whose set input
is  HI, because  outsideTemp < setPointTemp is true, which is  HI or  1 in  iC. Two intermediate
variables  tooCold and tooHot are used, because they are both used twice in the second LATCH
call, which turns the aircon motor on for heating when the inside temperature is too low and off again
when it is too high. The above statements provide a hysteresis of 2°C. With a set point of 20°C heating
is turned on when the inside temperature falls to 19°C and turns off when it reaches 21°C. 

In cooling mode, which applies, when the outside temperature rises above the set point temperature,
the opposite changes in temperature control the aircon motor.

immediate function blocks can also be user-defined. This will be covered later in this chapter.

Exercise 1-9. Run the program aircon.ic in iClive. Vary all 3 inputs and check that the outputs
control heating/cooling and the motor correctly. Have a look at the listing produced by the  immcc
compiler by pressing [File] > aircon.lst. Find the assignment statement for acMotorOn (Tip: press the
search button [/], type  acMotorOn in the search box next to the search button and press the search
button again). There are 7 expression nodes like logic symbols in a hardware logic diagram listed
under the statement. Inputs are on the left with a possible inversion followed by the logic symbols of
the node and the output name. The statement is broken up into intermediate nodes. [File] > aircon.ic
gets you back to the source.

Exercise 1-10. Save  aircon.ic as  airconx.ic.  Modify  airconx.ic by introducing the alias
cooling for ~heating as shown above. Build and Run this version and show its listing. The last 4
auxiliary  expressions  should  be identical  to  the listing  of  aircon.ic showing the variable  name
~heating, which is used for execution, and not its alias  cooling, which is just a bit of syntactic
sugar.

1.9  Counting in C code with immC variables

Counting is very important for all kinds of  iC programs and implementing counters in  iC opens up a
number of aspects which are different from ordinary imperative programming. What you cannot do is
simply increment an immediate variable like this:
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imm int badCounter   = badCounter + 1; // really bad ERROR

When compiling, this statement produces the following error message:

*** Error: input equals output at gate: badCounter

The problem is, that the immediate variable badCounter would change due to the addition and would
be scheduled immediately for another addition – if left like that the CPU would be in an infinite loop with
badCounter never catching up with itself.  Also what are we counting? The basic assumption for
imperative languages is that we increment every time the algorithm executes the statement. This does
not hold for declarative languages. Worse still is:

imm int badCounter++; // causes a syntax error

The  ++ and  -- operators as well as all  C assignment operators  +=,  -= etc.  are  not allowed for
immediate variables declared with imm for the same reason outlined above.

What we can do is to declare a special kind of immediate variable with the type modifier immC instead
of  imm in front of the two possible  immediate value types  int or  bit. An immediate immC variable
must be declared in iC code. It may optionally be initialised with a constant expression as part of the
declaration, just like a  C global variable. In  C code it acts just like a global variable. It can only be
assigned in  C code –  but  there it  can be assigned in  more than one  C statement  in the normal
imperative  manner.  Apart  from that  an  immC immediate variable  has  all  the  properties  of  other
immediate value variables – it can be used as a value in immediate expressions, whose execution will
be triggered when that immC variable is modified in a C statement. 

To test these ideas let us extend the air conditioner control program to aircony.ic with the following
added feature: instead of taking the set point temperature from an analog slider we provide two buttons
raiseTemp and  lowerTemp to  adjust  the set  point  temperature  in  1°C steps  as  is  usual  in  air
conditioner remote control units. For this we will need a counter which counts up and down. There are
several  ways  to  do  this.  An  obvious  way  is  to  use  an  immC int variable  for  the  counter
setPointTemp and do the counting in C code as follows:

immC int setPointTemp = 20; // immC variables are declared and
// initialised in iC code (default is 0)

imm  bit raiseTemp = IX0.0; // push-button aliases
imm  bit lowerTemp = IX0.1;

if (raiseTemp) { setPointTemp++; } // raise button pressed
if (lowerTemp) { setPointTemp--; } // lower button pressed

As explained in the program hello.ic an iC if statement executes a block of C code enclosed in
braces when the expression in parentheses after the if (the condition) goes HI. The single increment
or decrement C statements setPointTemp++ or setPointTemp-- are executed each time one of
the buttons is pressed. 

Here is the extended version aircony.ic of the program:

imm  int insideTemp  = IB1; // sense insideTemp   =
imm  int outsideTemp = IB2; // sense outsideTemp  =
imm  bit raiseTemp   = IX0.0; // remote control push-buttons
imm  bit lowerTemp   = IX0.1;

immC int setPointTemp = 20; //       setPointTemp =

if (raiseTemp) { setPointTemp++; } // raise button pressed
if (lowerTemp) { setPointTemp--; } // lower button pressed

imm bit heating      = LATCH(outsideTemp < setPointTemp,
     outsideTemp > setPointTemp);

imm bit cooling      = ~heating;
imm bit tooCold      = insideTemp < setPointTemp;
imm bit tooHot       = insideTemp > setPointTemp;

imm bit acMotorOn    = LATCH(heating & tooCold | cooling & tooHot,
     heating & tooHot  | cooling & tooCold);

QX0.0 = heating; // on is ac heating; off is ac cooling
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QX0.1 = acMotorOn;
QB1   = setPointTemp; // remote control set point indicator

1.10   User defined Function Blocks

Unlike in  C or other imperative languages,  where a  function evaluates a sequence of  instructions
whenever it  is called,  function blocks in  immediate C act more like templates, which are cloned at
compile time every time they are called (actually they are used, not called, but it is easier to think of
them as being called). An immediate function block is a separate immediate subsystem with immediate
parameters which are its inputs and outputs from other section of the  immediate system, optional
internal  immediate variables,  which  must  be  declared  inside  the  function  block  and  an  optional
immediate  return value, which may be used like any other immediate value – in an expression –
assigned to an immediate variable or used as an input parameter in a built in or user defined function
block call.

Like in  C, a function block provides a convenient way to encapsulate some computation, which can
then be used without worrying about its implementation. Like in C the use of function blocks is easy,
convenient and efficient.

So far we have only used the LATCH function block, which is a built-in function block1 provided by the
iC system. Let us encapsulate the counter used in the previous section in a function block and use it in
another version airconz.ic of the air conditioner program.

/********************************************************************
 * Up/Down counter with initialisation at compile time
 *******************************************************************/
imm int upDownCounter(bit up, bit down, const int ini)
{
    immC int counter = ini; // declare and initialise counter
    if (up)    { counter++; }    // increment counter
    if (down)  { counter--; }    // decrement counter
    this = counter; // return the counter value
}

/********************************************************************
 * Air conditioner control program
 * with raise and lower set point buttons and set point indicator
 *******************************************************************/
imm int insideTemp   = IB1; // sense insideTemp   =
imm int outsideTemp  = IB2; // sense outsideTemp  =
imm bit raiseTemp    = IX0.0; // remote control push-buttons
imm bit lowerTemp    = IX0.1; // show  setPointTemp =

imm int setPointTemp = upDownCounter(raiseTemp, lowerTemp, 20);

imm bit heating      = LATCH(outsideTemp < setPointTemp,
     outsideTemp > setPointTemp);

imm bit cooling      = ~heating;

imm bit tooCold      = insideTemp < setPointTemp;
imm bit tooHot       = insideTemp > setPointTemp;
imm bit acMotorOn    = LATCH(heating & tooCold | cooling & tooHot,

     heating & tooHot  | cooling & tooCold);

QX0.0 = heating; // on is ac heating;  off is ac cooling
QX0.1 = acMotorOn;
QB3   = setPointTemp; // remote control set point indicator

An iC function block definition has the same form as a C function definition:

imm return-type function-block-name(parameter declarations){
    declarations
    statements
}

1 Built in iC function blocks are defined and used in the same way as user defined function blocks.
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The most significant difference is, that the return type must be an immediate type, either  imm int,
imm bit, imm clock, imm timer or imm void (the last three will be introduced in section 3.2).

The function block upDownCounter is called once in the line

imm int setPointTemp = upDownCounter(raiseTemp, lowerTemp, 20);

Each call clones the function block, replaces the real argument objects for the formal parameters in the
definition and generates new nodes linked the same way as in the definition. The value returned by
upDownCounter() is assigned to setPointTemp2. 

The first line of upDownCounter itself,

imm int upDownCounter(bit up, bit down, const int ini)

declares the type of the result that the function block returns as well as all parameter types and their
formal names. The imm modifier is mandatory for the return type – it identifies an immediate function
block definition syntactically.  The  imm modifier is optional for  parameters in  a parameter list.  The
declared  parameters are nevertheless immediate,  except  const int parameters,  which must be
matched by a constant expression when called. Parameters may be either input value parameters, in
which case only their type is written in the list or the parameter may be an immediate output to which a
value from the function block is  to be assigned. In  that case the type of  the parameter  must  be
preceded by the keyword assign (This will be explained in more detail in section 5.1).

The return statement of an iC function block is an immediate assignment to a pseudo-variable called
this, which  is a place holder for the value in the expression the function block is used in. In our
example the return statement is

this = counter;

which simply returns the current incremented or decremented value of counter or as in this example
is an alias of counter.

A function block need not return a value, but in that case it must be declared imm void. In all other
cases a function block must return a value compatible with its declared return type. A function block
with a return value must have a return statement (assignment to this) and must either be assigned to
a suitable variable or else it must be used as a value of a suitable type in an expression or in an
argument list.  An  imm bit function block may be used as an  imm int value and vice versa –
appropriate conversion takes place. Also a function block must have at least one statement.  These
rules are much stricter than the rules for C functions. 

1.11  Function Block Arguments
Since iC function blocks are cloned when used, each real  (as opposed to formal) argument is an iC
node, which is linked into the network of nodes cloned from the function block definition. The question
whether arguments are passed by value or by reference, as in  C and other computer languages is
meaningless, except for const int arguments, which are passed by value as the result of a constant
expression evaluated at compile time. 

Each real immediate value argument of a function block call is either a simple immediate variable or an
immediate expression, both of which are compiled to an expression node object, which is linked to the
cloned internal nodes of the function block to form a subsystem of immediate expression node objects
driven by the argument expression nodes. An  assign argument must be the name of a previously
declared imm variable, which has not been assigned yet. It must be assigned in the function block.

There is one other type of function block argument – an array of  immC variables, which will be dealt
with in section 3.10. At this point it is worth mentioning that 'pointers' to iC variables are  meaningless.
The iC language can only deal with specific iC node objects declared with an imm or immC declaration
or aggregations of immC variables in an array.

2 In this particular example this is not quite true, because the return statement  this = counter makes  this an alias of

counter, which makes  setPointTemp an alias of  counter. But the variable  counter is of type  immC int which make

setPointTemp type  immC int.  imm variables and  immC variables are the same as far as their value is concerned, so in

practice there is no difference, except in this special case we could assign to setPointTemp in another C statement. But that

would be very bad form and would break the code if upDownCounter is modified to return an expression of type imm int.
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2    Input and Output

This chapter describes the I/O interface, which is the only unusual feature of the language. A rationale
for  the reasons this form was chosen is provided. It is covered first because it is so central to all iC
programs. 

External input and output names in iC follow the IEC-1131 standard. This was the standard for PLC's
when I worked as a software engineer developing firmware for PLC CPU's in the 80's. Unfortunately
that standard was renamed IEC-61131 in 1993 and was changed considerably – in particular  the
following naming conventions were no longer included as standard. Nevertheless they are still widely
used in industry and provide a sensible way to identify sources and sinks of external data in control
software with physical terminals in I/O racks. I have extended this usage in iC to use IEC-1131 names
as a common naming convention for sources and sinks of data between any type of app making up a
larger network of communicating  iC applications.  This  includes I/O drivers for  real  I/O,  iCbox – a
simulated I/O driver, GUI wrappers, which also provide sources and sinks of external data and the
actual iC executables themselves.

Inputs start with the letter  I, outputs with the letter  Q. These are followed by a second letter which
defines the type of the input or output. X defines unsigned bytes of 8 single bit I/O variables. B defines
unsigned numeric byte I/O variables,  W signed 16 bit  word I/O and  L signed 32 bit long word I/O
variables.  The letters  H,  F and  D have been reserved for 64 bit long long or huge integers, 32 bit
floating point and 64 bit double precision floating point variables. None of these last three have been
implemented yet.  The 2 capital letters are followed by a number, which defines the address index of
the variable in the I/O field. For bit I/O variables the address is followed by a full stop and a number in
the range 0 to 7, marking the bit address of the actual bit variable in the addressed I/O byte.  The
maximum address  index  that  can  be used depends on the implementation of  the driver  and the
underlying hardware. Addresses in the I/O field may be used for bit, byte, word or long word I/O. If all
of these are in the same physical address space, care must be taken not to overlap different types of I/
O. In the case 16 and 32 bit word I/O variables the byte addresses used may need to be on a 16 bit
word or a 32 bit long word boundary respectively. The iC compiler can generate warnings if I/O fields
overlap. In the default case, each size variable is assumed to be in its own address space and the
address of each variable is simply an index into each of these address spaces.

Here are some examples of IEC1131 names:

IX0.0 bit 0 of input byte 0 - pre-declared as imm bit
IX0.1 bit 1 of input byte 0
IX0.7 bit 7 of input byte 0

IX1.0 bit 0 of input byte 1
IX1.1 bit 1 of input byte 1
IX1.7 bit 7 of input byte 1

QX0.0 bit 0 of output byte 0 - pre-declared as imm bit
QX0.1 bit 1 of output byte 0
QX0.7 bit 7 of output byte 0

QX1.0 bit 0 of output byte 1
QX1.1 bit 1 of output byte 1
QX1.7 bit 7 of output byte 1

IB2 input byte 2 - pre-declared as imm int (8 bit input)

QB2 output byte 2 - pre-declared as imm int (8 bit output)

The IEC-1131 names above define the physical addresses of inputs
and  outputs  in  the  I/O  field.  Standard  practice  for  PLC  I/O
electronics is to package I/O units in narrow plug in units, which are
labelled as  shown  on  the  right.  The  program  iCbox,  which  is  a
simulated  I/O  widget,  emulates  this  scheme,  showing  the
relationship of physical addresses to their  IEC-1131 names.

For  more  readable  applications  it  is   highly  recommended,  that
alternate  descriptive  names  are  defined  for  IEC-1131  input  and
output  names.  This  would  normally  be  done  in  a  table  of  alias
assignments at the start of an  iC program. One advantage of this
scheme is, that if an input or output is physically moved to another
I/O pin, only 1 statement in the source needs to be changed. iCbox
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IEC-1131 names are pre-declared immediate variables. IX0.0 and QX0.0 etc. are of type imm bit,
whereas IB0, QB0, IW0, QW0, IL0, QL0 etc. are all of type imm int. All declared imm int variables
have  the native  int size  provided by  the  C compiler  used  to  compile  the output  of  the  immcc
compiler, which is usually 32 bits. All arithmetic is carried out with signed native integers, except that
the byte numeric I/O variables IB0, QB0 etc. are unsigned char. The usual C automatic conversion
of an unsigned char to a signed int is used to transfer values to and from the default signed
int used for arithmetic.

IEC-1131 input and output variables are pre-declared for iC and C code and normally do not need to
be declared except for the following cases:

• An  extern imm type  declaration  of  an  IEC-1131 input  variable  or  an  extern imm or
extern immC type declaration of an IEC-1131 output variable is needed if the same input or
output variable is going to be used in more than one module. 

• An imm type declaration of an IEC-1131 input variable or an imm or immC type declaration of
an IEC-1131 output variable is needed if that variable has been declared with an extern imm
declaration or in the case of an output variable with an  extern immC declaration in this
source module (usually in an included .ih header),  which means its storage is going to be
defined in this module. For an output variable this also means that the output variable must be
assigned in this source unless it is declared immC, in which case C assignment in this source
is optional. 

• An  IEC-1131 output variable, which is to be assigned in  C code must be declared  immC
independent of whether it was declared extern or not.

• IEC-1131 input variables can never be declared immC, because they are value variables which
can never be assigned either in iC or C code. Their values are determined in another app.

These rules for input and output variables are the same as for ordinary immediate variables, except
that IEC-1131 I/O variables which have not been declared extern imm do not need to be declared at
all (pre-declared when used in iC code and C code by default) except that IEC-1131 output variables
which are to be assigned in C code must be declared immC like ordinary immediate variables which are
to be assigned in C code.

extern imm int QB2; // to avoid multiple assign error
reachedFloor0x2
imm int QB2 = IB2 * 2; // QB2 must be declared imm int

extern imm bit QX0.2; // to avoid multiple assign error
imm bit QX0.2 = IX0.2 & IX0.3; // QX0.2 must be declared imm bit

immC int QB1; // must be declared immC int to allow C assign
immC bit QX0.1; // must be declared immC bit to allow C assign

if (IX0.0) { QB1 = IB1; QX0.1 = IX0.1; }

Exercise 2-1. Write two short iC source programs a.ic and b.ic in which some immediate I/O
variables assigned in a.ic are used in b.ic. Tip: to build the executable a execute

$ iCmake -l a.ic b.ic 

2.1  Communication between iC apps
An app written in  immediate C normally requires a driver program to supply or sink the IEC-1131
variables used in the app, although this driver code has been incorporated directly in the support library
for some real I/O hardware to gain a significant speed advantage (real means physical for I/O and not
formal for function parameters in this manual and not floating point). Only the GPIOs and the PiFace
extension board for the Raspberry Pi computer have direct high speed drivers, which can be linked
directly  to an app. All  other  drivers and GUI  wrappers (represented by an app called  iClift in  the
distribution) use TCP/IP communication via a special program called iCserver to forward event data to
and from iC executables. The physical channels for this TCP/IP communication can be localhost
(127.0.0.1) for communication between iC apps and iCserver running in parallel on the same CPU.
For apps running on other hosts on the same local area network (LAN) or generally anywhere on the
internet, the IP address name or 4 part numeric IP identifier of the host that iCserver is running on can
be specified by apps to register as clients with iCserver. The IP port used is 8778. When coming from
outside a LAN, this port  must be allowed to pass messages through any firewall  (a different  port
number can be specified if 8778 is a problem). 
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3    immediate Data Types, Expressions and Assignments

This chapter deals with data types additional to C, and the way operators and expressions are handled
with these new data types.

3.1  iC Variable Names
Names of variables in iC follow the same pattern as in C - letters and numeric digits; the first character
must be a letter. The underscore “_” counts as a letter and “$” counts as a number, although the use of
“$” is deprecated, because not all C compilers can handle it. Upper and lower case letters are distinct.
There is no limit to the length and case of iC variables. Only global variables used in embedded C code
have a limit, although most C compilers do not seem to impose a limit these days. The only restriction
on iC variable names are iC, C and iCa keywords, iC pragmas, iC built in function names and names
starting with “iC”, which are used by iC internally.

3.1.1  iC Keywords
assign bit clock const
else extern if imm
immC int return sizeof
switch this timer void

3.1.2  additional C Keywords
asm auto break case
char continue default do
double enum float for
fortran goto long register
short signed static struct
typedef union unsigned volatile
while

3.1.3  iC Pragmas
use no
alias list strict

3.1.4  iC built-in Function Blocks
CHANGE CLOCK D DLATCH
DR DS DSR FALL
FORCE iClock JK LATCH
RISE SH SHR SHSR
SR SRR SRT SRX
ST TIMER TIMER1

3.1.5  iCa Keywords
ELSE ELSIF FOR IF

3.2  iC Data Types and Sizes
Immediate C has six data types for use in immediate expressions, four of which are value variables:

imm bit is  a single bit  variable assigned in  iC code and mainly used in  immediate
logical expressions

imm int is  a  variable  whose  size  is  the native  size  of  a  C signed int variable
assigned in iC code and mainly  used in immediate arithmetic expressions

immC bit is a single bit logical variable which can only be assigned in C code
immC int is an int sized arithmetic variable which can only be assigned in C code

All imm and immC value variables can be used in both iC and C code. Only assignment is restricted.

All  these  data  types  are  implemented with  objects,  which  have extra  members  to  implement  the
immediate event following execution strategy in addition to the bit or int values. For the actual logic
or arithmetic, these extra members are irrelevant.
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The other two  immediate types are special  types used for synchronising the change of groups of
immediate variables to avoid timing races and for producing timed or counted delays:

imm clock synchronises the change of a group of variables
imm timer delays the change of a variable by a fixed or computed amount.

There is a last immediate pseudo type:

imm void used only to declare a function block without a return value.

3.3  iC Expressions
Immediate expressions are arithmetic or logical expressions external to all C functions, which contain
at least one immediate value variable or a function block call. All immediate expressions may contain
constants, although they are fairly useless and not common in logical expressions.  An  immediate
expression is re-evaluated whenever the value of one of the immediate variables it contains has
changed (and only then). This is the core of the   iC   event-driven strategy  .

Immediate expressions are most often assigned to variables declared imm bit or  imm int, which
can be used in other immediate expressions. Each such assignment causes all immediate expressions
containing the immediate variable just assigned to be re-evaluated if the variable changed. Immediate
expressions may also be used as value parameters in an immediate function block call, which usually
causes immediate assignments in the iC code cloned by the function block call or its return – all of
which propagate to other immediate expressions and finally to immediate outputs.

3.4  Operators in iC expressions
Most operators available in C may be used in immediate expressions. The precedence of the operators
is  the  same  as  in  C.  Some  C operators  are  not  valid  for  immediate expressions,  because  the
semantics in iC are different. These are the increment and decrement operators ++ and --, as well as
assignment expressions += -= *= etc. Structure and pointer operators -> .(dot) &(address of) and
*(pointer dereference) are also not allowed. These restrictions do not apply to embedded C code in
literal blocks and immediate if else or switch statements, which will be introduced later.

Array variables and index expressions using [ ] are available with the Array extensions of the language
either as immC Arrays or using imm variables using the pre-compiler immac (called automatically). See
section 7

3.4.1  Arithmetic and Relational Operators
The binary arithmetic operators + - * /, the modulo operator %, as well as unary - and + operate on
integer numeric values, usually of type  imm int, and yield numeric  results of type  imm int. The
same applies to the shift operators << and >>. If one or both of the operands used with one of these
operators is type  imm bit,  automatic type conversion takes place. Values of type  imm bit are
converted to the int values 0 or 1 corresponding to the values of the bit. The relational and equality
operators  <,  <=,  >,  >=,  ==, != and the unary operator  ! also have numeric operands,  but these
operators yield imm bit results by default. 

Immediate arithmetic, relational and bitwise integer expressions with numeric operands may contain
integer constants, as well as immediate operands. 

3.4.2  Bitwise integer Operators
If both operands of the binary operators &, |, ^ or the single operand of operator ~ are numeric values
of type imm int or constants, these operators carry out bitwise manipulation on their integer operands
– just like in C. The result is an imm int numeric value. 

3.4.3  Bit Operators
If one or both of the operands of the binary operators &, |, ^ or the single operand of operator ~ are of
type  imm bit, these operators carry out the bit manipulation operations  and,  or,  exclusive-or  and
not on imm bit objects. The result is an imm bit. Any operands of type imm int are converted to
imm bit. The numeric value 0 converts to 0 (LO), any other numeric value converts to 1 (HI). The
bit operators are used frequently in immediate C, since bit manipulation is very common in event driven
systems – more so than in algorithmic programs written in conventional languages like C, which does
not even provide a type  bit. Such logical bit expressions in  immediate C may not contain any  non-
immediate variables. Constants are allowed, although they do not make much sense. They either do
not change a variable e.g.   a & 1 === a;    b | 0 === b   or they produce another constant e.g.
c & 0 === 0;    d | 1 === 1  and    ~1 === 0. 
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3.4.4  Logical Operators
The logical connectives && and || are executed as arithmetic expressions, when one or both of the
operands are of type imm int. Evaluation is from left to right, and evaluation stops when the truth or
falsehood of the result is known – just like in C. The result is of type imm bit by default. The unary
operator !, operating on an imm int operand produces an imm bit result. 

The operators &&, || and ! with only imm bit operands are interpreted by the compiler exactly like
the bit operators &, | and ~, although there is really no point. Since evaluation does not stop when the
result is known, the use of  && and  || and  ! in expressions where all operands are  imm bit is
deprecated and causes a warning if no strict and an error if use strict (which is the default).

3.4.5  Conditional Operators
The operators ? : implement conditional expressions, just like in C, which are evaluated as a whole
in an arithmetic context. The conditional expression 

imm_expression_1 ? imm_expression_2 : imm_expression_3 

is a valid immediate arithmetic expression, which is triggered by a change in any immediate variable in
any of the three immediate sub-expressions.

3.5  iC Assignments
Immediate assignments are assignments of immediate expressions to immediate value variables. If the
value of the expression just computed has not changed from its previous value, nothing happens in the
assignment and no follow on expressions are affected. Value changes to an immediate variable are
detected in the assignment and this event triggers the re-computation of all immediate expressions, in
which the immediate variable, which has just changed, is a member. This is made possible, because
each immediate variable object has a list of pointers to every immediate variable, whose assignment
expression  is  directly  modified  by  the  current  immediate  variable.  This  strategy  ensures  that  all
immediate variables are kept up to date with the minimum amount of computation.

Assignment statements in which the right hand side is a single variable or a constant is an alias in iC.
Such a statement produces no executable code.  The alias name on the left hand side is simply an
alternative  name  at  compile  time for  the  immediate variable  on  the  right  hand  side.  Aliases  are
particularly useful for giving meaningful names to external input and output IEC-1131 variables. 

Like in C, an immediate assignment is also an immediate expression, which means that assignments
embedded in expressions are allowed. immediate assignments can be combined with the declarations
of immediate variables, but such declaration assignments are not an expression. 

Assignments of iC expressions to immediate variables obey the single assignment rule, a rule which
applies generally for data flow systems.  Any    immediate   variable may only be assigned in one  
immediate   assignment  . If multiple  immediate assignments were allowed there would be a conflict
between the current values of the different expressions being assigned to the same variable. Attempts
at multiple immediate assignments are flagged as hard compile errors.

Expressions, that occur in C code triggered by immediate conditional if else or switch statements or in
C functions  in  literal  blocks,  may  contain  immediate value  variables.  These  expressions  are  not
immediate expressions and are not triggered by the variables in the expression.  Instead they are
executed following conventional instruction flow in the C code. When such an expression is executed
in the C code, the current value of any immediate variable is used in standard instruction flow manner.

Immediate variables may even be assigned in  C code embedded in  immediate conditional  if else or
switch statements or in literal blocks. Such an assignment is not an immediate assignment – the value
is changed when the  C statement is executed. Nevertheless any change in the  immediate variable
assigned in the C code will trigger immediate expressions in iC code that contain that variable. Several
such assignments to the same immediate variable may be made in different sections of C code. Every
new assignment changes the variable in accordance with the intended algorithm. Immediate variables
assigned in C code must be declared as immC bit or immC int in an iC code section. An immediate
variable that is assigned in C code may not also be assigned in an immediate assignment. 

3.6  Constants and Constant expressions
Apart  from the  bit  constants  LO and  HI,  only  integer  constants  of  type  int can  be  used  in  iC.
Constants in iC follow the same rules as for constants in C, except that modifiers for sizes other than
int as well as floating point constants are not supported. The value of an integer  constant can be
specified just like in C as decimal e.g. 1275, octal or hexadecimal. A leading 0 on an integer constant
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means octal; a leading 0x or 0X means hexadecimal. A character constant is an integer, written as one
character in single quotes such as ʹaʹ. Constants in logical bit expressions may be  0 or 1, which are
equivalent to LO or HI, which are special bit constants that do not change.

If an expression consists only of constants or  const int parameters in a function block and no
immediate variables, it is a constant expression evaluated at compile time. Constant expressions may
be assigned to value variables of type imm int or imm bit (after conversion to bit), which become
aliases of the constant value of the expressions, executed at compile time, which obviously never
change and are themselves constants. Constant expressions may be used to index members of immC
arrays in iC code, to initialise immC variables following their declaration (similar to global initialisation in
C) and in function block calls to satisfy  const int formal parameters. They may also be  part of
immediate arithmetic expressions.

3.7  C Variables in iC Expressions
Plain  C int variables can be used in  immediate arithmetic  expressions, but their use in this way is
deprecated, since any change in such a C int variable does not trigger re-execution of the expression
when it’s value changes. To alert programmers, any plain C int variable to be used in iC expressions
must be declared in iC as follows:

extern int var; // C variable to use in an imm expression

One possible use of a plain C variable  is one which holds the value of a command line term, which
never changes after starting the program. A better choice is an immC variable, which can be changed
in C code if that were necessary.

3.8  C Functions and Macros in iC Expressions
C functions and macros to be used in iC expressions must also be declared in iC as follows:

extern int rand(); // C function with no parameters
extern int rand(void); // alternative syntax for no parameters
extern int abs(int); // C function or macro with 1 parameter
extern int min(int, int); // C function or macro with 2 parameters

It is easy to mistype the name of an  iC function block call, which then looks like a C function call.
Unless declared extern such a non-defined function block call will be compiled without error as a C
function call. Such an error is not discovered until link time. By forcing  extern declarations clean
error messages are produced at iC compile time and the extra effort is not great. 

When a  C function or macro is called in an  immediate expression, a check is also made, that the
number of parameters is the same as in the extern declaration. An error message is issued if not
correct.  No check is made for  C function calls in  C fragments controlled by  if else or  switch
statements or other literal C code, since the compilation is handled by the follow up C compiler, which
relies on its own function declarations with modern  C compilers.  This does mean that the correct
#include files for any C library functions to be used in iC code must also be mentioned in a literal block.

As can be seen above, only C int variables and C functions returning an int value and having only
int parameters may be used in iC expressions. For any other type C variable or function a suitable C
wrapper function, which casts all values to int, must be defined in a literal block.

3.9  External Variables and Scope
The C language makes a distinction between “external” objects, which are either variables or functions
and “internal”  objects,  which are variables  and arguments  inside functions.  External  variables  are
defined outside of any  C function,  and are thus potentially available to many functions.  Functions
themselves are always external in  C. By default, external variables and functions have the property
that all references to them by the same name, even from functions compiled separately, are references
to the same thing (quoted from K&R).

This distinction holds for any C code in an iC program. But in straight iC code all immediate variables
are “external” by the above definition, except that formal parameters and variables declared in an iC
function block definition fall into a different category altogether. Since iC function blocks are templates,
which do not compile into any code objects until they are cloned in a function block call, the formal
parameters and variables declared in a function block definition are “virtual”  objects, which do not
become real external objects until a function block is cloned. Virtual iC objects used in a function block
definition have similar scope to internal variables in a C function definition – they are only defined as
parameters or as local variables inside the braces of a function block definition.
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In practice the scope rules for C and iC variables and function (blocks) are similar, which was one of
the design aims for the iC language. The main difference is, that all non-virtual iC variables are external
because they exist outside of any C function. Syntactically iC variables are like C global variables with
an initialiser expression assignment. In  C this initialiser expression must be a constant expression,
which is evaluated and assigned at compile time. The same is true for immC variables, which can then
only be modified in  C code. For  imm variables the expression for the  single    immediate   assignment  
stays active - it is re-evaluated whenever an imm or immC variable in that expression changes, unless
the expression is  a constant  expression,  in which case the  imm variable becomes an alias of  a
constant evaluated at compile time.

Like in C, iC programs need not all be compiled at the same time; the iC source text of the program
may be kept in several files. Each such iC source module is separately compiled into a C file with the
immcc compiler, which are then compiled by a C compiler and linked with other compiled modules and
the iC run-time library into a machine code executable. Also like in C, each immediate variable must be
declared in one, and only one source module as follows:

imm bit heat;

although  it  is  recommended  to  combine  the  variable  declaration with  the  immediate expression
assignment required for the functionality of the program as follows:

imm bit heat = on & ~waterLo & ~tempHi;

Sometimes  the  functionality  is  circular,  in  which  case  a  variable  must  be  declared without  an
assignment before it is used. The  declaring type  imm bit may be repeated when that variable is
finally assigned, as long as the type matches the previous  declaration. It  is recommended that all
immediate assignments are preceded by their declaring immediate type. A trial compilation will report
any  variables,  which  have  been  used  before  they  have  been  declared  as  undefined.  A  simple
declaration can then be placed near the beginning of the program for those undefined variables. (None
of this is necessary if no strict is used, but this can lead to subtle errors and is highly deprecated).

An immediate variable declared in another iC source module must be declared extern in the source it
is used in, just like in C.

extern imm bit waterLo, tempHi;

The rules for extern variables in iC are the same as in C. Such extern variables can be used in any
immediate expression without being declared or assigned in the current module. The expectation is,
that they will be declared and assigned in another module, which will be linked to this module. There is
one difference to  C though:  extern variables, which have not been subsequently declared in this
module are assumed to be assigned in another module. Because of the single assignment rule these
variables may not be assigned in this module. It causes a multiple assignment error.

3.10  immC Arrays
immC Arrays are arrays of immC bit or immC int variables of the same type as its members. Just
like ordinary immC variables, indexed references to an immC Array may be used as immediate values
in both iC and C code, but they may only be assigned and changed in C code – either in if else or
switch C code fragments or in literal blocks. Another limitation is, that  immC Array indexed value
references in iC code may only use a constant expression index. Such an indexed immC Array element
is an alias for the immC member referred to and as such simply provides some syntactic sugar. In the
example below,  bb[0]is the same as  bx - it simplifies coding though. Whole  immC Arrays may be
passed by name in a Function Block call, if the Function Block definition specifies an immC array in that
position in its formal parameter list.

immC Arrays are declared in iC code – either with or without a list of named members.

immC bit bx, by, bz; // declared immC variables
immC bit bb[] = { bx, by, bz };// array of pre-declared variables
immC bit cc[3]; // immC bit cc0, cc1, cc2; generated

// and declared automatically

immC int aa[3]; // immC int aa0, aa1, aa2; corres-
// ponding to aa[0] aa[1] and aa[2]

 // are automatically generated

A declaration of  an  immC Array  without  a  member  list  must  specify  a  size.  The  member  names
automatically generated are the name of the array followed by a number equal to the index. (This
follows the same pattern as  imm Arrays resolved by  immac , which will be introduced in  section 7.
This choice was deliberate). Multi-dimensional immC arrays have not been implemented.
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For  an array  with  a  member  list  the size specification is  optional,  but  must  equal the number of
members in the list if it is specified. The names in the member list can be any previously declared
immC variables – they may even be indexed references of a previously declared  immC Array. If not
previously declared, the members are generated in the array declaration, just like automatic members.

immC bit ccr[3] = { cc[2], cc[1], cc[0] };  // reverse of cc[3]

immC Arrays may be used in another source if  they have been previously declared  extern.  The
extern declaration must match the final declaration exactly. The size must match and if a member list
is provided it  must  also be provided identically in the  extern declaration.  Only that way can the
members of an immC Array be used correctly both in iC code and C code of another source file.

extern immC bit bx, by, bz;
extern immC bit bb[] = { bx, by, bz };
extern immC bit cc[3];
extern immC bit ccr[3] = { cc[2], cc[1], cc[0] };

extern immC int aa[3];

An immC Array knows its own size and a run time warning occurs if an indexed reference is not within
the size range of the array. An indexed reference, which is out of range returns bit or int 0.

immC Arrays  may  be  passed as  formal  parameters  in  a  function  block  definition.  A formal  array
parameter is a name followed by square brackets which either contain a numeric size or is empty. If a
size is given eg b[4], the call to that function block must provide a previously declared array of exactly
that size. In this case iC code in the function block can also access the array. If no size is specified eg
a[], any size array can be provided in the call. That array can only be accessed in C code in the
function block. It is up to the C code algorithm to make sure that index values are within range.

The built in iC operator sizeof array returns the number of elements of an immC array (not its size in
bytes). The sizeof operator works best in C code fragments where its value is dynamic at run time. It
also works in iC code, where its value is determined at compile time. A difference occurs in function
blocks which have been passed an array of indeterminate size (a[]) as a parameter. Only the sizeof
operator in  C code will return the actual size of the array passed in a call. Since variable indexed
references  to  immC array  members are  only  possible  in  C code,  the  sizeof test  in  C code  is
appropriate. sizeof may be used to test index values to produce own error strategies.

To sum up: each use of an indexed immC array member like cc[2] in iC code or cc[x] in C code is
itself a named immC variable – namely the indexed immC member of the array cc[]  – and has all the
properties of a simple immC variable. This is different to C, where each array element is an independent
element in memory, but those elements do not have names other than the indexed array reference3.

3This statement ignores the possibility of using pointer arithmetic via the array name to access array elements in C.
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4   immediate Conditional Statements Literal Blocks, and Pragmas

An  immediate conditional  if else statement  and an  immediate switch statement  are  the only
control   constructs  available  in  iC.  The  conditional  statements  make  it  possible  to  execute  C
statements when immediate events occur. The syntax of both statement types is similar to their  C
counterpart, except that braces around the C statements are mandatory. In particular an else if is not
allowed, since the if after the else would have been part of the C statement controlled by the else part
of the whole immediate if statement, which would be very confusing. 

if (imm_bit_expression) { C_statement_1 }
if (imm_bit_expression) { C_statement_1 } else { C_statement_2 }
switch (imm_int_expression) { C_switch_selection_statement } 

These are valid immediate statements when they occur in iC code. The controlling expression in each
case must be an immediate expression. The controlling expressions in immediate conditional if else
or  switch statements are synchronized by a clock. The default clock is  iClock, when no specific
clock is coded (as in the above examples). Other clocks or timers may be specified as explained in
section 6.6. In all  cases any change in the controlling  immediate expression, synchronized by the
controlling clock, triggers execution of the  C statements. The actual execution of the  C statements
triggered by a conditional expression is deferred till after the clock cycle has completed. It is the first
action of a new combinatorial scan after a clock cycle. This is necessary, because execution of the C
code may modify immC variables, whose change must be allowed for in a combinatorial scan.

The immediate conditional if else and switch statements open the way to trigger the execution of
short C fragments on particular events. These events are either rising or falling edges of bit values or
changing numeric values. If more than a fragment of C code is involved, it is good practice to code this
in a  C function in a literal block, and to call that function in the  immediate control statement. Long
blocks of C code would make the purpose of those statements unclear. Depending on the time critical
nature of the application, C code should not take too long to execute, because during the execution of
such C fragments the processing of other immediate events is held up. Consider forking blocks of C
code.

4.1  immediate conditional if else statement
For an immediate if and optionally else statement, the controlling expression is a clocked immediate
bit expression in parentheses. If not, it is converted from int to bit automatically.

if (imm_bit_expression) { C_statement_1 } else { C_statement_2 }

A LO to HI transition or rising edge causes C_statement_1 to be executed. A HI to LO transition
or falling edge causes C_statement_2 to be executed (if an else is coded). The C_statements are
embedded C compound statements, not immediate statements.

%{
int a, b, c; /* C declarations in a literal block */
void reset(void); /* C function declaration */
%}

imm bit sw1, sw2, sw3; // immediate declarations
imm clock cl; // use cl rather than iClock

if (sw1 & sw2 | sw3, cl) { /* imm controlling expression */
a = 1; b = 12; c = -2; /* C code executed on rising edge */

} else {
reset(); /* C code executed on falling edge */

}

4.2  immediate switch statement
For  the  immediate switch statement,  the  controlling  expression  is  a  clocked  immediate int
expression in parentheses. If not, it is converted from bit to int automatically (should be rare).

switch (imm_int_expression) { C_switch_selection_statement } 

The C_switch_selection_statement is an embedded  compound statement, which has the usual
form of a  C switch statement with case labels. Any change in the controlling expression triggers the
switch statement.  The value of  that  expression after  the change is  applied to  the switch and the
selected case is executed as C code. 
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%{ enum Fuzzy { OFF, DIM, MEDIUM, BRIGHT }; %} // literal block
switch (brightness, cl) {

case OFF: lightVoltage(0); break;
case DIM: lightVoltage(10); break;
case MEDIUM: lightVoltage(18); break;
case BRIGHT: lightVoltage(24); break;
default: lightVoltage(24); break;

} // end of immediate switch statement 

4.3  Literal blocks
Literal blocks are sections of C code enclosed in special braces %{ and %}. They may occur before,
between and after any  immediate statement. Literal blocks are copied verbatim to the front  of the
generated  C output  code (without  the special  braces).  Literal  blocks  are useful  to declare  any  C
variables, define macros and to declare and define auxiliary  C functions to support the application.
Since iC Version 3 any C pre-processor commands such as #include, #define or #ifdef etc. in a
literal block are written in standard C form. 

%{
#include <math.h> /* standard C-pre-processor syntax */
int x, y, z; /* declarations in a literal block */
int abs(int); /* C function declaration */

%}
Literal  blocks and their  embedded  C pre-processor commands are resolved during  C compilation,
which follows the iC compilation. Pre-processor commands for the iC sections of code are %include,
%define or %ifdef etc. These are resolved before the iC compilation.

The run-time system will call the C function iCbegin() when an iC application is started before any
immediate processing. This function can be provided by the user in a literal block. If it is not provided, a
nearly empty function iCbegin() returning 0 is provided by the system. User implementations should
return  1.  One of the main uses of  iCbegin() is to  provide additional --help output to explain the
options of your iC app. Skeleton --help code is provided in the default iCbegin(). It may even contain
a fork() call to spawn a child process, which will run in parallel with normal immediate processing. This
opens up the  way  to  build  mixed  applications  using  conventional  multi-process  or  multi-threaded
control strategies in parallel with immediate C code, which leaves a lot of CPU time to do other things.

The complementary function  iCend() is  called by the run-time system when an  iC application is
terminated externally (iC applications never terminate by themselves, unless iC_quit() is called in
embedded C code). iCend() could be used to free memory allocated with malloc or new in your C or
C++ code. 

%{ 
int iCbegin() { ...; return 1; } /* optional C initialisation */
int iCend() { ...; return 1; } /* optional C termination */
%}

If the code in literal blocks, or code in  C blocks controlled by an  immediate if else or  switch
statement, is specifically C++ code, then the generated code must be compiled by a C++ compiler. The
Code generated by iC statements is pure C code.

4.4  Pragmas
Pragmas affect the compilation phase of an iC program. Pragmas are introduced by the keywords use
and no. 

use turns a pragma option on
no turns it off

Currently three pragmas are implemented in immediate C: alias, strict and list.

use alias; // equivalent to -A command line option
no  alias; // turn alias option off

use strict; // equivalent to -S command line option
// default since iC Version 2

no  strict; // turn strict option off (deprecated)

use list; // restore listing output from the next line - default
no  list; // suppress listing output from the next line



27

1. The  alias pragma or  -A command line option forces the compiler to generate a node for
each alias in the generated  C code (default is to generate no node). This is needed in two
circumstances:

• It  is  required,  if  an  iC source  refers  to  an alias  in  another  iC source  by  an  extern
reference. Since all references to aliases are normally removed from the compiled code,
the C object modules, which are generated from such code could not be linked. With the
use alias option, the code can be linked and the remaining aliases are resolved at start
up.

• The use alias option is also useful for debugging. Only when it is set, are alias names
displayed as active words by iClive. Since the amount of memory used for the extra nodes
is small, it is best to leave  use alias.

2. The strict pragma or -S command line option (which is the default since Version 2) forces
the  compiler  to  expect  a  declaration  of  all  immediate variables,  before  they  are used  or
assigned in an iC statement. With no strict (deprecated), an imm bit variable is assumed
for  any undeclared  value variable. Similarly an assignment to an undeclared name from a
CLOCK() or TIMER() function call  produces a default  imm clock or  imm timer variable.
Such laxness is OK for small  single source projects,  but can lead to problems with larger
projects. I had a case in a large project, where I had declared a number of imm int variables
and mistyped one of  them, so  the correct  name was  not  declared.  This  name was then
assigned -  but converted to  imm bit and then back to  imm int when used, leading to
incorrect arithmetic. As noted earlier, C functions and macros should be declared extern with
their correct parameter ramp and return value. When strict is active, error messages are
output if an undeclared C function or macro is called in an immediate C expression.

3. The no list pragma suppresses listing output from the next line until a use list statement
starts listing output again. This is mainly used to suppress listings of function block definitions
in %include files, which may be regarded as clutter. Typical use:

no list; // %include “adconvert.ih”
%include “adconvert.ih”
use list;

Listing output is the no list line only. The comment is recommended, telling what will not
have been listed, which is the whole of the file adconvert.ih and the use list line.

Several options may be turned on or off together in one pragma call: e.g. use alias strict;

The scope of iC pragmas is a file. If a pragma is enabled in one file it carries over to an included iC
header file. If on the other hand a pragma is changed in a header file, it reverts to its previous value in
the iC file after the %include statement, which includes the header file. This makes sure that sloppy
no strict iC programs, which include a header file, which uses “strict” syntax, will not report
errors,  because  they  do  not  follow  the  “strict”  syntax.  This  scope  feature  can  only  be  used
successfully with the strict and list pragmas, since use alias only comes into effect during C
code generation – at this point the complete source has been parsed. This means use alias should
always be used once in  iC programs, which consist of several files with extern references between
them. Otherwise aliases will not be resolved at link time. Single source iC programs can use alias,
which generates slightly larger code, but which can be debugged without recompiling with the -A flag.
There  is  no  extra  timing  penalty  at  run-time.  The  extra  alias  nodes are  only  used  by  the  iClive
debugger to recognise the alias names.  

4.5  Comments
C style  comments  /*  ...  */ can  be  used  anywhere  between  tokens  of  iC programs.
C++ style comments may be used at the end of iC lines. // ...

Some older  C compilers do not support  C++ style comments, so their use in literal  blocks and  C
statement blocks controlled by  if else or switch statements  may lead to portability problems,
although this is becoming unlikely in the 21st century.
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5    immediate Function Blocks 

Functions are commonly called function blocks in the PLC world, because they act more like functional
blocks or templates rather than functions in the instruction flow sense, where a function evaluates a
sequence of instructions whenever it is called. An immediate Function Block is a separate immediate
subsystem with  immediate parameters which are its  inputs  and outputs from other section of  the
immediate system, optional internal immediate variables, which must be declared inside the Function
Block and an optional immediate return value, which may be used like any other immediate value – in
an expression – assigned to an immediate variable or used as an input parameter in a built in function
or function block call. Only standard IEC-1131 I/O variables may be used in a Function Block without
being declared, although they may only be used as values, since any assignment to an output variable
such as QX0.0 inside a Function Block would lead to a multiple assignment, once the Function Block
is used more than once. Another way to look at an immediate Function Block is like a higher level or
LSI  integrated  circuit,  which  has  connections  into  the  system  and  provides  a  certain  complex
functionality with many internal components and connections.

5.1  immediate Function Block Definition
All immediate Function Blocks, except built-in Function Blocks, must be defined before they are used.
Since the definition of a Function Block does not itself generate any C Code on compilation it can be
and usually is defined with its code body in a header file, if multiple source files are used for a project.
For small projects with a single source file Function Blocks can be defined at the start of the source file.
It is not sufficient to declare a Function Block prototype like a C function prototype without a function
body. The full Function Block definition must be available to the compiler before the first call or use of
that Function Block.

immediate Function Block definitions are very similar to  C  functions,  although there are significant
differences in detail. The definition of an immediate Function Block consists of a return value type, a
Function Block name, a comma separated parameter list in parentheses and a function body in curly
braces, e.g.

imm bit fall(bit f, clock c) { this = RISE(~f, c); }

The return value may be one of 5 types:

imm bit
imm int
imm clock
imm timer
imm void // which means no value is returned

The imm modifier is mandatory for the return type – it identifies an immediate Function Block Definition
syntactically. The Function Block name can be any valid name starting with a letter followed by any
number of alphanumeric characters or underscores. A leading underscore is possible, but should be
avoided.  The  name must  be  distinct  from all  other  immediate  variable  names  in  a  project.  The
individual formal parameters in the parameter list must be of the following types:

imm bit // or simply bit // imm is implied
imm int // or int
imm clock // or clock
imm timer // or timer
const int // call parameter must be a constant expression

It is also possible to specify immC bit or immC int arrays in the formal parameter list as follows:

immC bit bb[10] // or bit bb[10] // immC is implied
immC int aa[] // or int aa[] // size is optional

The  imm modifier (or  immC for arrays)  is optional for parameters in a parameter list.  The variable
declared is nevertheless immediate. Parameters may be either input value parameters, in which case
only their type is written in the list or the parameter may be an immediate output to which a value
determined in the Function Block is to be assigned. In this case the type of the parameter must be
preceded by the keyword assign. Array parameters cannot be assigned. 

assign imm bit // or assign bit

If the size in square brackets of an array parameter is left out, that position can be filled by an array of
any size – there is one drawback – no indexed array references to that array can be made in the iC
code of the Function Block. They can only be referenced or assigned in C code in the Function Block.
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The body of a Function Block is one or more immediate statements defining the functionality of the
block encoded in curly braces. Immediate variables internal to the function must be declared before
use in the Function Block. Parameter names and internal variable names are in a separate name
space for each function block, which is also separate from the global name space. 

If a Function Block is not imm void the body must contain a return statement. The semantics of the
return statement is the assignment to the variable to which the Function Block is assigned, when it is
called. This variable is identified by the keyword this inside the Function Block, and may be used in
other expressions in the Function Block. The preferred way to write the return statements is:

this = some + immediate + expression; // preferred return syntax

The usual C syntax may also be used, but does not make the action as clear:

return some + immediate + expression; // deprecated earlier syntax

The return statement need not be the last statement in the Function Block definition – its position does
not influence when it is executed – that is controlled purely by changes in the values of the variables
making up the return statement – something which holds for all immediate statements. This situation is
more clearly  expressed by the assignment to  this.  An  imm void Function Block  has no  this
variable, may not contain a return statement and may not be assigned when called. 

Each assign parameter must occur on the left side of an assignment statement in the Function Block.
The values of  assign parameters may be used inside the Function Block. Each variable declared
inside the Function Block must also be assigned in the Function Block. Variables declared  extern
outside or inside the Function Block may not be assigned to inside the Function Block. As is the case
with I/O variables (which are implicitly extern).  extern variables may only be used as values inside
the Function Block. They may not be declared again as local inside the Function Block. Variables
declared extern in a Function Block may be declared after the definition of the Function Block in the
iC code following the definition. This declares that  the variable will  be assigned in this module. A
variable with the same name as an  extern variable may be declared locally in another Function
Block, but it is a different formal variable local to that Function Block. 

All immediate statement types – assignments, if else, switch, Built-in Functions and other user defined
Function Block calls may be used in Function Block definitions. Function Blocks may be nested to any
depth as long as Function Blocks are used, which have previously been defined. This implies that
Function Blocks cannot be called recursively, either directly or indirectly. Function Blocks may be very
simple one line definitions or complex systems with hundreds of parameters. Several examples follow:

The SRX flip-flop is  built  into the compiler,  but  defined in just  this  way during initialisation of  the
compiler. Since Version 2 of the compiler, all built in functions are defined as Function Blocks.

/* SRX flip-flop defined as a function block */

imm bit srx(imm bit set, imm clock scl,
imm bit res, imm clock rcl)

{
this = SR(set & ~res, scl, res & ~set, rcl);

}

The CountClk function adds 'increment' to 'this' for every occurrence of 'clk':

imm int CountClk(imm clock clk, imm int increment)
{

this = SH(this + increment, clk);
}

The CountBit function adds 'increment' to 'this' for every rising edge of 'step':

imm int CountBit(imm bit step, imm int increment)
{

this = CountClk(CLOCK(step), increment); // nested call
}

The Count function adds 1 to 'this' for every rising edge of 'step':

imm int Count(imm bit step)
{

this = CountBit(step, 1); // nested twice
}

The SelectClk function selects either a 100 ms or a 1 second clock with variable 'second':
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imm clock SelectClk(imm bit second)
{

this = CLOCK(T100ms & ~second | T1sec  &  second );
}

The  following  function  block  ADConvert  assigns  the  conversion  of  int val to  8  assign bit
variables b0 to b7 passed as parameters (imm is implied for value and assign parameters).

/* Analog to digital conversion of a byte value */
imm void ADConvert(int val, // input parameter

assign bit b0, // output assign parameters
assign bit b1,
assign bit b2,
assign bit b3,
assign bit b4,
assign bit b5,
assign bit b6,
assign bit b7,

)
{

b0 = val & (1 << 0); // assignments to outputs
b1 = val & (1 << 1);
b2 = val & (1 << 2);
b3 = val & (1 << 3);
b4 = val & (1 << 4);
b5 = val & (1 << 5);
b6 = val & (1 << 6);
b7 = val & (1 << 7);

}

Note: the parameter list may have a trailing comma before the closing parentheses. This is generally
the case for comma separated lists in  iC and makes it easier to edit the lists and copy parameters
when written vertically, which is useful for large parameter lists.

The  iC compiler builds a template of the Function Block,  replacing each parameter  and internally
declared variable by the name of the Function Block followed by '@' and the formal parameter or
declared variable name. This strategy ensures a private name space for each Function Block. When
called, the template is copied, with each formal parameter replaced by its real parameter and internally
declared variables replaced by the formal name with the '@' replaced by an underscore '_' followed by
another underscore and an instance number for the call. The instance number scheme ensures that
there is no clash of compiler generated variable names (even for separately compiled modules).

5.2  immediate Function Block Call
An immediate Function Block is called in a similar fashion to a C function, again with some significant
differences. In practice  immediate Function Blocks are not called. When the compiler encounters a
Function Block call, the pre-compiled Function Block, which is a template, is cloned, with all calling
parameters and internal variables replacing the formal parameters and formal internal variables in the
template. The resulting real network of individual nodes associated with the call will then be used at
run-time like the network of nodes generated from all other immediate statements.

If an imm void function is encountered it looks like a subroutine call:

ADConvert(IB1,
     QX0.0, QX0.1, QX0.2, QX0.3,
     QX0.4, QX0.5, QX0.6, QX0.7,
);

This statement will assign bits 0 to 7 of IB1 to QX0.0 to QX0.7 whenever IB1 changes.

A Function Block with a return value must either be assigned to a suitable variable or else it must be
used as a value of a suitable type in an expression or a parameter list. An imm bit Function Block
may be used as an imm int value and vice versa – appropriate conversion takes place. imm clock
and  imm timer Function Blocks  can  either  be assigned to  correctly  declared  clock or  timer
variables or else used as a clock or timer in a parameter list.

/* count every rise of IX1.0 */
imm int count = Count(IX1.0);
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/* selects 1 sec when IX1.7 is on else 100 ms */
imm clock clk = SelectClk(IX1.7);

Real parameters of type  imm int and  imm bit may be mismatched with their formal parameter
types – value and assign parameters in the call will be forced to their formal type. assign parameters
of type imm clock and imm timer must match – so must  value parameters of type imm timer.
Real immC Array parameters are only the name of a previously declared immC Array of the same type
as the formal parameter. The size must also match unless the formal parameter did not specify a size.

The handling of formal  imm clock value parameters is more complicated, allowing the use of default
clocks. Positions for formal  imm clock parameters which do not immediately follow another formal
clock parameter are handled as follows:

1. The position may be filled by a real imm clock parameter.

2. The position may be filled by a real imm timer parameter followed by an imm int delay (delay is
optional and will be set to 1 if left out).

3. The position may be left out altogether, in which case the next clock or timer parameter on the right
(including an optional timer delay), separated by at least one non clock  formal  parameter, will be
replicated for the position. If there is no real clock parameter following on the right, iClock will be
used.

On the other hand the second of two consecutive formal clock parameters must be matched by a real
clock or by a real timer parameter optionally followed by an imm int delay parameter. If the first of the
formal clock pair is not matched by a real clock or timer parameter, it and all unmatched formal clock
parameters to the left will be set to iClock. 

These rules for optional clock parameters are the same for the clocked built-in functions D,  SR,  SRR,
SH,  SHR,  SHSR,  RISE,  CHANGE,  CLOCK,  TIMER and  TIMER1 as  well  as for  the  if and  switch
statements, which are also clocked.

Real timer parameters for formal timer parameters cannot be extended by a delay – the delay used
is determined in the Function Block with delay(s) associated with formal  timer parameter(s) in the
code of the Function Block. 

Formal parameters of type const int must be filled by a constant value or constant expression when
called. const int parameters can be used in Function Blocks as initialiser values for immC variables
and  index values for immC array members, which must be constants. They can also be used as timer
delay values and generally in immediate arithmetic expressions.

The following are calls of the SRX() Function Block with two formal clock parameters – one each for
set and reset and the ST() function block with two consecutive formal clock parameters – one optional
for set and the second a non optional delayed self reset timer or clock.

imm clock clk0 = CLOCK(IX1.0), clk1 = CLOCK(IX1.1);
imm timer t    = TIMER(IX1.2);
imm bit s, r;
imm bit m1 = SRX(s, clk0, r, clk1); // uses individual clocks
imm bit m2 = SRX(s, t, 3, r, t, 5); // individual timer delays
imm bit m3 = SRX(s, r, clk1); // same clock for s and r
imm bit m4 = SRX(s, r, t, 5); // one timer for s and r
imm bit m5 = SRX(s, clk0, r) // default iClock for r
imm bit m6 = SRX(s, iClock, r, clk1); // must specify iClock here
imm bit m7 = SRX(s, r); // default iClock for both

imm bit m8 = ST(s, clk0, t, 5); // t is not optional
// because it fills 2nd formal clock

imm bit m9 = ST(s, t, 5); // iClock for s - t is not optional
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6    Built-in Function Blocks

iC has a number of built-in functions, which are so central to the operation of the system, that they
have been made a part of the language. They are implemented as efficient building blocks in the
supporting run time package. All  built-in functions are defined internally as pre compiled Function
Blocks. (parameter types shown are all immediate – the keyword imm is optional for Function Block
parameter definitions and is left out in this description for clarity). All except the LATCH and the FORCE
functions are clocked, which is analogous to similar functionality in hardware IC's. Clocking overcomes
the negative effects of race conditions.

6.1    Unclocked memory elements
There are two unclocked memory elements in iC, the FORCE function and the LATCH function, which
was already used in earlier chapters.

6.1.1  Unclocked flip-flop or LATCH
The unclocked R-S flip-flop is the LATCH function with the following calling sequence: 

imm bit LATCH(bit set, bit reset);

The following truth table describes the LATCH function: 

set reset LATCH(set, reset)

Q

0 0 Q

1 0 1

0 1 0

1 1 Q

The  LATCH function is particularly fast and efficient,  using only a single gate node. It is of course
possible to program a similar latch function with a pair of cross coupled OR gates. In iC this looks as
follows: imm bit set, reset, Q, Qbar;

Q    = set & ~reset | ~Qbar;
Qbar = reset & ~set | ~Q;

The disadvantage of this implementation is the fact  that four gate nodes are required and that its
function as a latch memory element is hidden. LATCH clearly shows its function.

6.1.2  FORCE function
Closely related to the LATCH function is the FORCE function with the following calling sequence and
truth table:

imm bit FORCE(bit arg1, bit on, bit off);

arg1 on off FORCE(arg1,on, off)

0 0 0 0

1 0 0 1

X 1 0 1

X 0 1 0

0 1 1 0

1 1 1 1

The FORCE function passes the value of arg1 to the output if both on and off are 0 (or both are 1). If
only  on is  1 then the output is forced to  1,  independent of the value of  arg1.  Conversely if  only
off is 1 then the output is forced to 0. This function is useful for testing.

The LATCH function is generated by the more fundamental FORCE function as follows:
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imm bit LATCH(bit set, bit reset)
{ this = FORCE(this, set, reset) }

Feedback of its own output this is used to hold that value at its input, unless the set or reset inputs
force the output to a different value, which is then maintained.

6.2    Race conditions, Glitches and Clocking
A race condition is an undesirable situation that occurs when a device or system attempts to perform
two or more operations at the same time, but because of the nature of the device or system, the
operations must  be done in  the proper  sequence to  be done correctly.  Race  conditions  manifest
themselves  as  timing  races  between different  events  in  electro-mechanical  relay  logic,  electronic
switching circuits as well as in  computer software, especially multi-threaded or distributed programs.
Timing races can also occur in immediate C, because it is an event driven system. All these systems
take a small,  but not negligible amount of time to execute their  various actions.  This leads to the
situation, where an event signal may be processed by several elements on different paths in a network.
When a design specifies that  the signals triggered by one event come together  again, the timing
through these elements may lead to a timing race, where the signal through one path may come before
or after that same signal processed through another path. Under unfavourable conditions this leads to
a short erroneous output, which is known as a glitch.

The simplest example to demonstrate a timing race is a two-input AND gate fed with a logic signal A on
one input and the same signal passed through an inverting gate on the other input. In iC this can be
tested with the statement  B = A & ~(A & HI); (The2nd  input  HI on the inverting AND gate is
necessary, because in iC a simple inverter ~A would be an alias, which would be B = A & ~A. This
expression is recognised by the iC compiler as an error, since the output is always LO). In theory the
expression A & ~(A & HI) should never be HI. However for both electronic logic and iC, changes in
the value of A take longer to propagate to the second input through the inverting AND gate than the
first when A changes from LO to HI. This results in a brief period during which both inputs are HI, and
so the output of gate B will also be HI. Once the LO signal ~A arrives through the inverting AND gate,
the output of B becomes a correct  LO. But for a short period the HI glitch on B may trigger memory
elements like a LATCH if B is connected directly to their set or reset input.

Design techniques such as Karnaugh maps encourage designers to recognize and eliminate race
conditions before they cause problems. This was the only way to deal with race conditions in electro-
mechanical relay circuits.

Fortunately in the late fifties John Sparkes invented a method called c  locking   or synchronous logic for
electronic logic circuits, which completely eliminates the effects of glitches4. With  clocking, memory
elements such as RS flip flops have an extra clock input in addition to their normal set and reset input.
The effect of the clock is to hold up the output of any clocked memory element synchronised by the
same clock until all combinatorial logic – including all glitches have settled down. Clocking also ensures
that the outputs of a number of clocked memory elements never change between clock pulses, which
ensures that the next state of a memory element after a clock can never affect the logic during the
current clock period. For clocked electronic logic circuits there is a minor penalty. The frequency of the
clock must be slow enough so that all combinatorial actions have completed between two clock pulses.

Clocking has  been used to  good effect  in  the design  of  the  immediate  C language. It  has  been
implemented as follows in  iC. After all combinatorial changes induced by one or more input events
have been computed, a clock phase is started, which usually changes some logic values of slave
outputs of clocked functions. This starts a new run of combinatorial actions, which is again followed by
a clock phase. This sequence is continued until there are no more changes to compute. Only at this
point are external outputs sent. After this the iC system waits for further input events at which point the
cycle is repeated.

Because clock phases in iC follow immediately on completed combinatorial action phases there is no
timing penalty for using clocking in iC. It is worth pointing out here, that combinatorial and clock actions
in iC take fractions of microseconds to execute on modern computers. Times between external events

4I was fortunate to be introduced to clocked logic in 1964 at the ‘British Telecommunications Research Laboratory where John

Sparkes made his invention. I used clocked logic with Germanium Transistor and Diode circuits to design a control computer

for a large mail sorting machine. This was well before clocked logic became popular with DTL and TTL integrated circuit chips.

A

HI

B
A

B

~(A & HI)
glitch~(A & HI)

And

Nand



34

in a system to be controlled by an immediate C program are usually in the range of 50 ms to seconds,
minutes or even hours. For even the fastest inputs the CPU loading of an iC program is rarely more
than 1 %.

As pointed out earlier even software using multi-threaded or distributed programs can suffer from race
conditions.  This happens when two threads read and write the same shared data simultaneously.
Mechanisms to control such sharing are Mutexes and Semaphores.

Controlling  race  conditions,  glitches  and  synchronisation  of  multiple  outputs  in  iC is  relatively
straightforward and very safe, if the rules and calling sequences for clocked function blocks described
in the rest of this chapter are followed. These rules are identical to those used by clocked integrated
circuit  elements,  which  have  proved  immensely  successful  for  implementing  modern  comput  ing  
circuits.  The use of  clocking is  certainly  much simpler  than the rules  for  using Mutexes  in  multi-
threaded programs.

6.3    Clocked digital memory elements
Following the usage in hardware integrated circuits a number of different clocked memory elements
have been implemented in iC. These are the D flip-flop with and without Set and Reset, the SR flip-flop
and the JK flip-flop. An unusual memory element is a ‘Sample and Hold’, which is a direct analogy of
the clocked D flip-flop for numeric values.

All clocked built in memory elements follow the Master Slave principle, which is also the way clocked
memory elements are realised in hardware. 

The Master gates of a clocked function do not act immediately on the Slave function, but instead are
blocked by a clock. When the clock fires, the inputs to the Master gates are blocked and then the
outputs of the Master gates act on the Slave function, which is expressed as a Truth Table as shown
below for the different clocked functions. During the clock phase no change of any Slave output can
cause a change in any combinatorial Master gate expression to affect a Slave output, either directly or
indirectly through other gates. The result is that the state of all Slave outputs at the end of a clock
phase reflect the state of the Master gates at the beginning of that clock phase (when incidentally all
glitches have been resolved).

6.3.1  Clocked SR flip-flop
The memory element that is represented in most PLC instruction sets is the R-S flip-flop. This flip-flop
has two logic inputs. The rising edge of the set input puts the flip-flop in the "one" state and the rising
edge of the reset input puts the flip-flop in the "zero" state. Many books on switching theory describe a
simple unclocked latch memory element by the name R-S flip-flop. Following the usage for PLC’s in
IEC-1131, and because the set parameter precedes the reset parameter in the calling sequence, the
clocked Set-Reset flip-flop was named SR flip-flop in iC: 

imm bit SR(bit set, clock sc, bit reset, clock rc);

set reset SR(set, sc, reset, rc)

Sn Rn Qn+1

0 0 Qn

0/1 X 1

X 0/1 0

1 1 Qn

An alternate version SRR with one set input and two reset inputs is provided (mainly to implement the
full SRT mono-flop as a function block).

imm bit SRR(bit set, clock sc, bit reset1, clock rc1, 
  bit reset2, clock rc2);

a f
b

d
e

clock c

set

reset

Q

Master gates Slave function

f = SR(a & b, c, d & e, c)

And

And



35

The  SR flip-flop implemented in  iC differs marginally from the classical R-S flip-flop described in the
literature, which has the disadvantage that Qn+1 is undefined for R and S both "one". The design rules
for  the  R-S  flip  flop  state  that  R  and  S  must  never  be  "one"  together.  Since  this  would  cause
unwarranted confusion the implementation with the above truth table was chosen, which gives identical
results with designs following the rules of the classical R-S flip-flop. If the rule of both inputs "one" is
ignored, the results are still easy to interpret. For the above reasons clocked R-S flip-flops are rare as
integrated circuits.

6.3.2  Clocked JK flip-flop
Instead  JK flip-flops were  popular in  integrated hardware.  They toggle their  output on every clock
pulse, when J and K are both "one". In recent years even these have not been listed in the IC data
books. A JK flip-flop has been implemented in iC: 

imm bit JK(bit set, clock sc, bit reset, clock rc);
equivalent to    SR(set & ~Q, clock sc, reset & Q, rc);

set reset JK(set, sc, reset, rc)

Jn Kn Qn+1

0 0 Qn

1 0 1

0 1 0

1 1 ~Qn

6.3.3  Clocked SRX flip-flop
In practice the simple clocked SR flip-flop can be difficult to control under the following conditions:

A 0/1 set transition has occurred which sets the flip-flop and some time later a  0/1 reset transition
occurs which resets it, while set is still a  1. Even if reset goes back to 0, the set input is not active
again until it goes back to 0 and then to 1 again. This works well in many situations, but can be counter
intuitive. For this reason the SRX flip-flop or the JK flip-flop can be used more effectively.

imm bit SRX(bit set, clock sc, bit reset, clock rc);
 equivalent to    SR(set & ~reset, sc, reset & ~set, rc);

set reset SRX(set, sc, reset, rc)

Sn Rn Qn+1

0 0 Qn

0/1 0 1

0 0/1 0

1 1 Qn

1\0 1 0

1 1\0 1

When both set and reset are 1, then both internal S and R inputs are 0. If there is a 1\0 transition on
either set or reset, then the alternate input has a 0/1 transition, which sets or resets Q. 

6.3.4  Mono-Flop ST(set, timer, delay)
The Mono-Flop, or ST() function is a modified SR flip-flop, in which the output is internally connected
back to a timed reset input. This internal reset is usually clocked by a TIMER, which is controlled by a
delay parameter. The delay parameter may have a fixed or variable numeric value. The ST mono-flop
output is  reset,  when the number of  TIMER ticks  corresponding to the value of  "delay",  from the
moment when the ST was set, has occurred.

imm bit ST(bit set, clock sc, timer tim, int delay); or
imm bit ST(bit set, clock sc, clock tc);
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The SRT mono-flop has an additional reset parameter, which can reset the mono-flop prematurely. The
SRT mono-flop is based on the SRR flip flop, which has two reset inputs.

imm bit SRT(bit set, clock sc, bit res, clock rc, clock tc);

Instead of clocking with a delay TIMER, any clock may be used as the last parameter of the ST mono-
flop, which is then reset on the next clock pulse after it has been set. The last timer, delay or clock
must be specified – it may be iClock in which case a thin pulse is produced - one fundamental clock
period wide. Both set (and reset in the case of SRT) can have clock parameters – default is iClock if
none are provided.

6.3.5  Clocked D flip-flop
The simplest clocked flip-flop is the D flip-flop or delay memory element, a function having a single logic
input, a clock input and an output equal to the input in the previous clock period. 

imm bit D(bit expr, clock c);   or
imm bit D(bit expr); /* default iClock used as clock */ 

The following truth table describes the D flip-flop: 

expr D(expr, c)

Dn Qn+1

0 0

1 1

The  D flip-flop  has  become  the  most  commonly  used  clocked  flip-flop  in  hardware  design.  Its
application is called for, when several bit expressions must produce synchronized outputs, so that any
further  logic  done with  these outputs  does not  suffer  from timing races.  A typical  example is  the
implementation of a state machine. The  D flip-flop is also a 1 bit memory element, which can store
information from one clock period to the next. The D flip-flop is called for in any design where feedback
is involved. The use of the clocked D flip-flop in iC will probably fall into a similar pattern. 

For all clocked built in functions with more than one input value parameter, each such parameter may
have its own clock. If a clock parameter is supplied it applies to all value parameters on its left, which
do not have their own clock. If no clock parameter is specified, the built in iClock is used.

6.3.6  D flip-flop with Set and Reset
D flip-flops may have an optional set or reset input or both, as well as the D input. The names of these
variants indicate which parameters are required (clocks are optional):

imm bit D(  bit expr, clock c); /* simple D flip-flop */
imm bit DS( bit expr, clock c, bit set, clock sc);
imm bit DR( bit expr, clock c, bit res, clock rc);
imm bit DSR(bit expr, clock c, bit set, clock sc,

bit res, clock rc);

6.3.7  Clocked LATCH function DLATCH
A final digital memory element in  iC is  a clocked LATCH, which is implemented as an unclocked
FORCE function as a Master input to a clocked D flip flop with feedback from the output of the D flip-
flop to the FORCE function. It is implemented as follows:

imm bit DLATCH(bit set, bit reset, clock c)
{ this = D(FORCE(this, set, reset), c) }

DLATCH will not trigger on glitches on its set and reset inputs, whereas LATCH will. This means that
LATCH should only be used if the logic of the set and reset inputs is very simple and is guaranteed not
to have glitches. Unlike the other clocked memory elements, DLATCH may not have separate clocks on
its set and reset inputs. To properly synchronise a number of memory elements the same clock must
be used for all inputs anyway.

6.4  Edge detector functions RISE, FALL and CHANGE
It is often useful to generate a pulse on the rising and/or falling edge of a logical signal or on a change
of a numeric value.  Edge detector pulses turn off at the next clock.  Edge detectors are an important
element of PLC instruction sets. In a PLC Edge detector pulses set when their input rises and reset at
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the next “end of program cycle”. To be correct, an Edge detector instruction in a PLC must be placed
after its input, but before its use in the cycle. Such sequencing limitations are not required in iC.

imm bit RISE(bit expr, clock c); // pulse on rising edge
imm bit FALL(bit expr, clock c); // pulse on falling edge 
imm bit CHANGE(bit expr, clock c); // pulse on both edges

The  CHANGE function is also implemented for arithmetic expressions. The output is nevertheless of
type imm bit. 

imm bit CHANGE(int arithExpr, clock c); // pulse on every change

The bit output pulses every time arithExpr changes, qualified by the clock c. The clock limits the
rate at which changes are recognized. This is often useful with numeric values, which may change at a
high rate, and a slower sampling rate is called for. 

The pulse outputs of all edge detectors are just long enough, so that they catch the next clock pulse
after the edge, but only that one clock pulse – not more. When the output of an edge detector is used
directly or indirectly as input of another clocked function with the same clock, correct synchronization is
achieved. Edge detectors are needed when the rising or falling edges of a number of signals which
overlap need to be combined. 

As shown in the diagram, a | b has only one rising edge, whereas RISE(a, c) | RISE(b, c)
has two rising edges, which is what is normally required.

Note: there is a significant difference between the output of the RISE function and the output of the ST
mono-flop. The output of the RISE function turns on with the rising input signal and turns off again on
the next clock. The output of the mono-flop turns on with the next clock after the set signal and turns off
with the next clock after that, which is one clock pulse later, assuming the same clock is used for set
and internal reset. When the two clocks are different, which is usual for  ST mono-flops, the case is
different again.

6.5    Clocked analog memory element
iC has one clocked analog memory element with several parameter options.

6.5.1  Clocked Sample and Hold function SH
This function is a direct analogy of the clocked D flip-flop for numeric values. The numeric output of the
SH function equals the numeric input in the previous clock period. 

imm int SH(int arithmeticValue, clock c);

The sample and hold function can be used to sample fast changing numeric inputs at a constant clock
rate. Other uses are the implementation of many useful constructs such as state machines, counters
and shift registers, to name a few.

imm int count = SH(count + 1, c); // count clock c pulses
// shift register with b as input in the least significant bit.
imm bit b; // b assigned somewhere else
imm int shift = SH((shift << 1) + b, c);

6.5.2  Sample and Hold with Reset and/or Set 
The Sample and Hold function also comes with either reset or set and reset inputs. When the reset
input is clocked, the output is set to all 0's. By analogy when the set input is clocked the output is set to
all  1's.  The  inputs  set and  reset are  imm  bit expressions;  whereas  the  first  input
arithmeticValue and the output are imm int.

imm int SHR( int arithmeticValue, clock c, bit res, clock rc);
imm int SHSR(int arithmeticValue, clock c, bit set, clock sc,

bit res, clock rc);

a

b

a | b
clock c

RISE(a, c) | RISE(b, c)
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6.6    Clock Signals and Clock functions
There are two types of clock signal, imm clock and imm timer. It is important to realize that clock
signals are not of the same type as logic or numeric value signals of type imm bit or imm int. Clock
signals are declared as follows:

imm clock myClock;
imm timer myTimer;

Under no circumstances may clocks appear in expressions with logic or numeric values. Any attempt
to do so generates a hard error message. Clocks may only be used as clock parameters in Function
Block calls. Clock signals in iC are best thought of as timeless pulses, whose occurrence marks the
separation of one clock period from the next along the time axis. All clocked Function Blocks in  iC
follow the Master-Slave principle. The Master element in a D flip-flop follows the input. The output of
this  Master gate is transferred to the Slave element during the active phase of the next clock pulse.
The output of the Slave element is the output of the D flip-flop. All Master-Slave transfers during one
particular  clock  pulse  are  completed  before  more  combinatorial  bit  or  arithmetic  expressions  are
executed. This ensures that the outputs of all Function Blocks, which are synchronized by the same
clock, change simultaneously as far as the input logic is concerned.

Clock signals can come from four different sources:

1. The built-in iClock, which is signal type imm clock

2. The CLOCK function, which generates type imm clock 

3. The TIMER function, which generates type imm timer 

4. The TIMER1 function, which also generates type imm timer 

6.6.1  Built-in immediate clock iClock
There is a built-in immediate clock with the name iClock. This clock runs at the highest system rate.
Syntactically  iClock is  used  as  the  default  clock,  when no  other  clock  is  specified.  It  must  be
specified by the name iClock when no default clock is allowed by the syntax of a function call.

x = SR(set, reset); // set and reset clocked by built-in iClock

y = SR(set, iClock, reset, rc); // clock for the set argument
// must be named if different
// from the reset clock rc

iClock introduces a clock phase immediately after every completed run of combinatorial  actions,
which have linked a Master gate of a clocked function to the special clock list iC_cList, which is the
action list for iClock. Because secondary clocks either use iClock by default, or another clock that
is eventually clocked by iClock, all clocks (and timers) are synchronous with iClock. The execution
of immediate logic is triggered by some input, which causes evaluation of follow up statements, until no
more changes occur.  iClock generates a clock pulse after every such burst of activity in the logic.
iClock has the same significance for immediate logic as the “end of program cycle” in a conventional
PLC. The main difference is, that for conventional PLC’s all statements in the program are executed for
each  program  cycle.  For  immediate logic  only  the  changes  triggered  by  one  or  at  most  a  few
simultaneous  inputs  are  executed  for  each  clock  (program)  cycle.  This  typically  takes  a  few
microseconds at most for a modern processor. There are support tools which can measure and display
this time in microseconds.

6.6.2  CLOCK function
The second source of clock signals is the CLOCK function, which has one or two logic inputs – each
with an optional clock input. The  CLOCK function produces an output  clock pulse during the active
phase of the input clock, which follows a 0 to 1 transition of one of its logic inputs. If no clock input is
specified,  iClock is used. All  CLOCK outputs are synchronous with their input clock,  and ultimately
with iClock. The following are the calling profiles for the CLOCK function:

imm clock CLOCK(bit in,  clock c); or
imm clock CLOCK(bit in1, clock c1, bit in2, clock c2);

The following are examples of calling the CLOCK function and using the clock output:

imm clock clk = CLOCK(b); // ‘clk‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit   y   = D(a, clk); // D flip-flop clocked by ‘clk’ 
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imm clock cl2 = CLOCK(b,~b); // clock on rising and falling edge
// of b, both clocked by ‘iClock’

The following diagram shows the timing relationship between iClock and input b to the output clock
clk generated by the CLOCK() function, the timing of clocking y = D(a, clk) with clk, and the
timing of generating cl2 with the function above.

6.6.3  TIMER function
The third source of clock signals is the TIMER function, which also has one or two logic inputs – each
with an optional  clock input. The output generated by the  TIMER function are of signal type  imm
timer and are generated in precisely the same way and at the same time as clock pulses from a
CLOCK function with the same inputs. timer pulses differ from clock pulses in the way they are used.
Input parameters of type timer are followed by an optional delay parameter, which may be a constant
value or an arithmetic expression (if  missing a value of 1 is used). The current value of the delay
expression is read on the rising edge or change of the associated input, and the result  n is used to
count timer pulses. The output is clocked by the nth timer pulse after the changing input. Use of a
clock rather than a  timer changes the output of a function on the next  clock after a change in
input. If the delay value n of a timer call is 0 - or on the falling edge of a logic input for a function other
than the SH, CHANGE or switch function - the output is changed immediately by the next iClock. For
a SH, CHANGE or switch function the input is usually arithmetic and those functions are timed on all
changes of input, even if they are a logic input, which is possible for the CHANGE function.  

imm timer TIMER(bit in,  clock c); or
imm timer TIMER(bit in1, clock c1, bit in2, clock c2);

imm timer tim = TIMER(b); // ‘tim‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit   z   = D(a, tim, 3);// D flip-flop clocked by ‘tim‘,
// turn on delayed by 3 ‘tim‘ pulses,
// immediate turn off clocked by ‘iClock‘ 

The following diagram shows the behaviour of a  TIMER() generated timer for different length's of
input 'a' relative to the timer 'tim' pulses:

A D flip-flop clocked with a timer generates a function with turn on delay. If the logic input to such a
delay element turns off before the delay time is up, the output never turns on. This is a very useful
function to implement time-outs, which are notoriously difficult to implement by conventional means.

iClock

z

b

tim

a
tim     1        2  shortiClock offtim     1         2         3 tim     1         2         3

iClock

y

b
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a

iClock

y

b
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a

cl2
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6.6.4  TIMER1 function
The fourth source of clock signals is the TIMER1 function, which is very similar to the normal TIMER
function. The signal type generated is  imm timer – the same as the type generated by a normal
TIMER. The only difference is the way in which a 0 delay and the falling logic input is handled, when a
timer, generated by the  TIMER1 function controls a clocked function. A 0 delay is handled like a
delay of 1 – turn on is at the next timer pulse. On the falling edge of the input the output is clocked on
the next timer pulse, rather than by the next iClock, which is the case for TIMER generated timer
signals unless the input is to an SH, CHANGE or switch function, in which case the falling edge is also
timed – just like for the TIMER function. A TIMER1 generated timer, used with a delay of 1 (or 0),
functions  identically  to  a  CLOCK generated  clock signal,  except  there  is  a  small,  but  significant
amount of overhead in handling timer signals. For this reason CLOCK functions are to be preferred for
simple clocking – their use is very fast. 

imm timer TIMER1(bit in,  clock c); or
imm timer TIMER1(bit in1, clock c1, bit in2, clock c2);

imm timer ti1 = TIMER1(b); // ‘ti1‘ on the rising edge of b
// clocked by next ‘iClock’(default)

imm bit   z1  = D(a, ti1, 3);// D flip-flop clocked by ‘ti1‘,
// turn on delayed by 3 ‘ti1‘ pulses,
// turn off clocked by next ‘ti1‘ 

The following diagram shows the different turn-off handling for a  TIMER1 generated  timer (in the
shaded area):

CLOCK, TIMER and TIMER1 functions have optional clock inputs, which may come from other CLOCK
or TIMER functions. All  CLOCK,  TIMER or  TIMER1 outputs are synchronous with their input clock(s).
This absolute synchronisation is an important aspect of the robust performance of clocked immediate
C applications. The cascading of clocked functions allows the realization of many useful applications.

6.7  Timing and miscellaneous inputs
To allow programs to work with real time, the following timing inputs have been provided as internal
inputs in iC: 

TX0.3 or T10ms // 10 ms, 5 ms on, 5 ms off
TX0.4 or T100ms // 100 ms, 50 ms on, 50 ms off
TX0.5 or T1sec // 1 second, 500 ms on, 500 ms off
TX0.6 or T10sec // 10 seconds, 5 seconds on, 5 seconds off
TX0.7 or T1min // 1 minute, 30 seconds on, 30 seconds off

These are  imm bit inputs, not  imm clock signals. They are mainly used to generate clocks or
timers, which are synchronous with real time. For example:

imm clock clk100ms = CLOCK(T100ms); // clock every 100 ms
imm timer tim500ms = TIMER(T1sec, ~T1sec); // timer every 500 ms

The following miscellaneous internal inputs will be discussed in later examples.

TX0.0 or EOI // off during initialization, then always on
TX0.1 or STDIN // notification of a line of standard input

TX0.2 or T1ms // 1 ms, 500 us on, 500 us off (not implemented)

iClock

z1

b

ti1

a
ti1     1        2  shortti1 offti1     1         2         3 ti1     1         2         3
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The aliases T10ms, T100ms, T1sec, T10sec and T1min for the IEC-1131 names TX0.3 – TX0.7
as well as EOI, STDIN, for TX0.0, TX0.1 are compiler generated when those words are used in
expressions. (T1ms for  TX0.2 has been reserved for implementations with a higher speed real time
operating system like RTLinux).  LO is a compiler generated  imm bit variable with no input and a
constant bit 0 output.  HI is generated as the alias of  ~LO with a constant bit 1 output. They are all
keywords in the iC language and may not be declared a second time. Bit constants  LO and HI are
provided to fill unneeded bit call parameters required by a function block.

The rising edge of EOI (end of initialisation) is guaranteed to be the first input to the system and can be
used for  initializing user  constructs.  It  starts  LO and then is  HI for  the remainder of  the program
(forever as far as applications are concerned)

Keyboard or other input received from standard input (stdin) causes an interrupt every time a line
terminated by a Newline has been received. This interrupt causes STDIN to pulse HI for one iClock
period. The data from stdin is available in the global C array char iC_stdinBuf[].

6.8  Example programs using clocked functions
So far in this chapter the calling profiles and functionality of the iC built-in functions have been listed.
The following examples explain the way these functions are used. It must be stressed again, that the
way they are used is exactly the same as the use of similar IC function modules in hardware electronic
logic design. There is a lot of literature on this subject, which will help programmers to come up to
speed in this area. On the other hand the following examples will  show how clocking designs are
organised and clocking is used.

6.8.1  A divide by 10 Moebius ring counter
This is a very simple counter using 5 SR flip flops and 10 two input AND gates to decode the 10
outputs. It was popular in the first large control computer I built in the mid 60’s, when only clocked SR
flip flops, inverters and logic using germanium transistors and diodes were available. (moebiusSR.ic)

imm clock c0 = CLOCK(IX0.0); // input to be counted
imm bit m0, m1, m2, m3, m4;

m0 = SR(~m4,  m4, c0);
m1 = SR( m0, ~m0, c0);
m2 = SR( m1, ~m1, c0);
m3 = SR( m2, ~m2, c0);
m4 = SR( m3, ~m3, c0);

QX0.0 =  m0 & ~m1; // 0
QX0.1 =  m1 & ~m2; // 1
QX0.2 =  m2 & ~m3; // 2
QX0.3 =  m3 & ~m4; // 3
QX0.4 =  m4 &  m0; // 4
QX0.5 = ~m0 &  m1; // 5
QX0.6 = ~m1 &  m2; // 6
QX0.7 = ~m2 &  m3; // 7
QX1.0 = ~m3 &  m4; // 8
QX1.1 = ~m4 & ~m0; // 9

The actual Moebius sequence is much simpler to generate and easier to visualise with D flip flops.

m0 = D(~m4, c0); // (moebiusD.ic)
m1 = D( m0, c0);
m2 = D( m1, c0);
m3 = D( m2, c0);
m4 = D( m3, c0);

This counter is much simpler than the full binary counter, which follows.

6.8.2  A divide by 16 binary counter
This counter uses only 4 flip flops but many more gates. It would be even more complicated for a
divide by 10 counter, which is left as an exercise. (binarySR.ic)

imm clock c0 = CLOCK(IX0.0); // input to be counted
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imm bit m0 = SR(~m0,                 m0,                 c0);
imm bit m1 = SR( m0 & ~m1,           m0 &  m1,           c0);
imm bit m2 = SR( m0 & m1 & ~m2,      m0 & m1 &  m2,      c0);
imm bit m3 = SR( m0 & m1 & m2 & ~m3, m0 & m1 & m2 &  m3, c0);

QX0.0 = ~m0 & ~m1 & ~m2 & ~m3; // 0
QX0.1 =  m0 & ~m1 & ~m2 & ~m3; // 1
QX0.2 = ~m0 &  m1 & ~m2 & ~m3; // 2
QX0.3 =  m0 &  m1 & ~m2 & ~m3; // 3
QX0.4 = ~m0 & ~m1 &  m2 & ~m3; // 4
QX0.5 =  m0 & ~m1 &  m2 & ~m3; // 5
QX0.6 = ~m0 &  m1 &  m2 & ~m3; // 6
QX0.7 =  m0 &  m1 &  m2 & ~m3; // 7
QX1.0 = ~m0 & ~m1 & ~m2 &  m3; // 8
QX1.1 =  m0 & ~m1 & ~m2 &  m3; // 9
QX1.2 = ~m0 &  m1 & ~m2 &  m3; // A
QX1.3 =  m0 &  m1 & ~m2 &  m3; // B
QX1.4 = ~m0 & ~m1 &  m2 &  m3; // C
QX1.5 =  m0 & ~m1 &  m2 &  m3; // D
QX1.6 = ~m0 &  m1 &  m2 &  m3; // E
QX1.7 =  m0 &  m1 &  m2 &  m3; // F

The  binary  sequence  is  quite  difficult  to  generate  using  D  flip  flops.  Here  is  an  implementation
developed using exclusive or gates:

imm bit m0 = D(~m0, c0); // (binaryD.ic)
imm bit m1 = D( m1 ^  m0, c0);
imm bit m2 = D( m2 & ~m1 | m1 & (m2 ^ m0), c0);
imm bit m3 = D( m3 & ~m2 | m3 & ~m1 | m2 & m1 & (m3 ^ m0), c0);

All these counters are not very useful in actual control systems. They simply show how simple state
sequences can be generated using flip flops. 

6.8.3  A state machine showing running lights
Another state machine, which is often shown at trade fairs is a set of 8 running lights which go on and
off up and down in sequence. It is an effective display, both on hardware lights for physical I/O cards
and their simulation with iCbox. (bar.ic)

imm timer t = TIMER(T100ms); // 100 ms time base
imm bit b0 = D(~b0, t, IB1); // IB1 changes clock rate
imm clock c0 = CLOCK(b0);

imm bit m0, m1, m2, m3, m4, m5, m6, m7, m8;

QX0.0 = m0 = SR(~m8     , m8 & ~m1, c0);
QX0.1 = m1 = SR(~m8 & m0, m8 & ~m2, c0);
QX0.2 = m2 = SR(~m8 & m1, m8 & ~m3, c0);
QX0.3 = m3 = SR(~m8 & m2, m8 & ~m4, c0);
QX0.4 = m4 = SR(~m8 & m3, m8 & ~m5, c0);
QX0.5 = m5 = SR(~m8 & m4, m8 & ~m6, c0);
QX0.6 = m6 = SR(~m8 & m5, m8 & ~m7, c0);
QX0.7 = m7 = SR(~m8 & m6, m8      , c0);
QX1.0 = m8 = SR(~m8 & m7, m8 & ~m0, c0);
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7    Arrays and the pre-compiler immac

Arrays in conventional instruction flow languages are a named collection (often of fixed length) of
similar  variables,  which  are  accessed  by  an  index  expression,  e.g.  a[5].  Each  such  entity  is  an
individual object, but in instruction flow languages the index is often a variable, which is manipulated in
a loop and references  to  the individual  indexed entities  occur  sequentially,  as  in  the following  C
example:

for (n = 0; n < 4; n++) { // plain C code
a[n] = b[n] * c[n];

}

7.1  Immediate Arrays 
In data flow languages like immediate C, loops at run-time are meaningless. Each immediate variable
is an entity, which is controlled by one assignment statement. The variable changes, when a variable in
the  expression  of  the controlling  statement  changes  and not  when some loop runs.  It  is  well  to
remember, that immediate variables and their controlling expressions are more like IC building blocks
connected in a static network. In that sense immediate Arrays are like hardware registers containing a
number of similar hardware objects,  which act  out their  individual function inside the hardware IC
register.

Such arrays may be defined in immediate C, but each entity acts individually at run-time, which means
that an individual immediate object must be generated for each immediate array member.

7.2  Use of immediate Arrays
Arrays in conventional languages as well as in  immediate C give programmers extra capabilities to
express themselves. These fall into several distinct categories:

1. Arrays allow the writing of repeated similar statements as one statement – this saves a lot of
writing, but could also be done without arrays.

2. Additionally  arrays  allow the parametrisation of  the array  length,  both within  the program
source and in the command line of the compiler call, which is probably more important. For
immediate C,  this makes possible the writing of control  programs in which the number of
control elements or groups is variable and the actual number is not bound until compile time.
This would not be possible without arrays in the language. 

3. Arrays are also useful to select another  variable in one indexing operation. If the index is itself
a variable, this sort of operation can only be done in embedded C code in immediate C using
immC variables whose changes can act back  on normal  iC code. To allow this sort of fast
access,  immC Arrays have been implemented in iC – they were introduced earlier in section
3.10. Note: immC arrays are not part of the extended iCa language compiled by immac.

4. The definition of dynamic arrays, whose sizes change at run-time, is meaningless for a data
flow language and is therefore not possible in immediate C.

An example of the usefulness of arrays in the language would be an  iC program controlling lifts or
elevators in a building. The number of floors varies from building to building – so do the number of
parallel lifts, which may be required. With arrays, a single  iC program can be written, which can be
compiled for a different number of floors and a different number of parallel lifts as follows:

immac -P FLOORS=12 -P LIFTS=2 liftControl.ica

7.3  Implementation of immediate Arrays
Since each immediate array member is an individual immediate object at run time, it is important for
debugging with iClive to be able to have a listing showing each individual array member – not just its
collective form, e.g. a[N]. To achieve this, an iC program containing arrays is translated by the pre-
compiler  immac to  iC code  without  arrays.  This  is  a  simple  text  operation  in  which  macros  are
expanded, loops are unrolled and index expressions are evaluated.

The iC language with arrays has four additional language extensions:

1. C or Perl-style 'FOR loops', which define a loop variable and a range.

2. C or Perl-style 'IF', 'ELSE IF' and 'ELSE' statements ('ELSIF' is a synonym for 'ELSE IF')
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3. Index expressions in square brackets, which allow the definition of array variables – usually in
a FOR loop.

4. Macro definitions, which are processed directly by immac, which can be defined in two ways:

• in C-pre-processor style with %%define instead of #define, e.g.
%%define FLOORS 12

• in the command line, just like for a C compiler, but using -P instead of -D, e.g.
-P FLOORS=12

Macros will mostly be used inside the square brackets of an array variable or in the control line
of a 'FOR loop', but they can be used anywhere in the iC code or in the definition of another
%%define macro – macros may be nested. The above implies, that the immac pre-compiler
could be used as a macro pre-processor for iC programs without any arrays at all. 

iC programs containing the above four extensions are called iCa programs and should be written in a
file with the extension .ica – the immac pre-compiler, written in Perl, translates an iCa program to an
iC program with the extension .ic in which macros and 'FOR loops' are expanded and immediate array
instances are converted to simple immediate variables. The following iCa snippet in file lift.ica

%%define FLOORS 4

FOR (N = 0; N < FLOORS; N++) {{
imm bit liftTo[N] = up[N] | down[N];

}}

expands to the following iC file lift.ic when compiled by immac:

imm bit liftTo0 = up0 | down0;
imm bit liftTo1 = up1 | down1;
imm bit liftTo2 = up2 | down2;
imm bit liftTo3 = up3 | down3;

The 'FOR loop' is executed at compile time and generates repeated copies of the statement(s) in the
compound statement controlled by the loop. This only makes sense, if there are elements in the loop
statement(s), which are modified by index operations using the control variable of the 'FOR statement' –
in the above example that is the variable N. 

The translation of indices in square brackets is carried out in two steps:

1. The expression in square brackets is evaluated as a Perl integer expression.

2. The numeric value produced replaces the square brackets and the expression it contains.

In the above example the index expressions are simply the variable N. But the index expressions can
be more complex. A feature of iCa indexing may seem strange at first, but it turns out to be very useful;
the square bracketed index expression may be placed anywhere in a word, not only at the end of a
word. It may even be placed on its own – in that case the expression is evaluated and becomes a
suitably modified integer constant in an iC statement. The following example shows both:

FOR (N = 0; N < 7; N++) {{
QB[N] = IB[N+1] * [N+2];
QX[N/8].[N%8] = IX[N/8].[N%8] & IX[10+(N/8)].[N%8]; // out: [N]

}}

expands to :

QB0 = IB1 * 2;
QX0.0 = IX0.0 & IX10.0; // out: 0
QB1 = IB2 * 3;
QX0.1 = IX0.1 & IX10.1; // out: 1
QB2 = IB3 * 4;
QX0.2 = IX0.2 & IX10.2; // out: 2
QB3 = IB4 * 5;
QX0.3 = IX0.3 & IX10.3; // out: 3
QB4 = IB5 * 6;
QX0.4 = IX0.4 & IX10.4; // out: 4
QB5 = IB6 * 7;
QX0.5 = IX0.5 & IX10.5; // out: 5
QB6 = IB7 * 8;
QX0.6 = IX0.6 & IX10.6; // out: 6
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As shown above, index expressions may even be used in comments. This can be useful, because the
expanded iC text must later be used for debugging with iClive – the original text with 'FOR loops' and
index expressions is not meaningful for following the values of actual nodes at run-time. The above
example already gives a hint of how much writing can be saved. The way I/O bit variables following the
IEC-1131 standard are expanded is particularly useful.

The  iCa extensions to the  iC language can be embedded as additional lines in regular  iC code. A
%%define macro definition may not be embedded in the middle of a line of iC code – not even between
iC statements, which have been written in one line. This limitation is similar to the limitations imposed
by the C pre-processor cpp on the C language.

7.4  FOR loops
'FOR loops' follow the syntax of C 'for statements' with the difference, that the word FOR is upper case
(to avoid clashes with 'for statements' in embedded  C code) and the controlled  iC code  must be
enclosed in twin braces (single braces are required for  immediate switch and if else statements as
well as for function block bodies):

FOR (expr1; expr2; expr3) {{
iC code, which is repeated under control of the loop
or nested 'FOR loops'

}}

The only restrictions are:

1. Each 'FOR statement' must define one (and only one) control variable, which is an  int by
default:

FOR (N = 0; N < 10; N++) or FOR (int N = 0; N < 10; N++)

The control variable is the first 'word' of expr1, which is not 'int' i.e.  N in the example. The
word 'int' in the second form is optional and can be written to remind programmers, that the
control variable is an integer. The control variable cannot be declared anywhere else.

2. Other atoms in the three expressions must be either constant expressions or expressions
which contain control variables of the current and/or outer 'FOR loops'. All expressions may
contain macro calls, which must expand to integer constants, strings or expressions containing
valid FOR loop control variables. Under no circumstances may immediate variables be used in
these expressions.

3. The names of control variables must be different from any  immediate variable. It  is highly
recommended, that upper case names be used for 'FOR loop' control variables. This and the
upper  case  keyword  'FOR'  and  the  twin  braces  {{  }} make  these  code  generating
statements in the iCa language stand out from normal iC and C code. 

4. The scope of the control variable of a 'FOR loop' begins when the control variable is initialised
in the 'FOR statement' and ends with the final matching twin braces. The control variable is not
valid outside of this scope.  'FOR loop' control variables will never appear in the generated iC
files (except as comments if the immac -a option is used).

Since immac is implemented as a Perl script, an alternate Perl type of 'FOR loop' using a list in various
forms may also be used.

FOR N (<Perl type list>) {{
iC code, which is repeated under control of the loop
or nested 'FOR loops'

}}

Similar restrictions to those above apply. The variable after the 'FOR' is the loop control variable. It may
optionally be preceded by the word 'int'. The control variable is given each value of the 'Perl type list'
for each iteration of the loop. Some powerful manipulations are possible with this form. Although a
perlish syntax is used in the second form of the FOR control statement, any variables in either form
follow the C syntax for scalar variables – they are never preceded by a $ as in Perl. 

FOR int N (0 .. 3) {{ a[N], }}

internally generates the following Perl code (see optional .log file)

$FOR = “”; for my $N (0 .. 3) {$FOR .= “ a@{[$N]},”;} print $FOR;

which is executed as an eval to generate the following output:

a0, a1, a2, a3,



46

iC code embedded in twin braces is repeated without a LF, if the final braces are on the same line as
the  iC code. The same can be achieved by terminating an  iC code line with a back slash '\', which
looks as follows:

FOR int N (0 .. 3) {{
a[N],\

}}

generates the same as above.

Lists in the second form of the 'FOR loop' may be made up of decimal numbers or strings. Strings may
be embedded in parentheses although lists of bare words will also be interpreted as strings.

imm int FOR N ("in", "out", "tmp") {{ fast_[N], }};

generates 

imm int fast_in, fast_out, fast_tmp,;

The above iC declaration would have produced a syntax error until recently. The iC language has been
extended to allow such comma separated lists to have a final comma before the semi-colon to end the
statement. This is in line with other comma separated parameter lists, which may also have an extra
comma at the end.

Again the same can be achieved with backslashes. The following (with barewords in the list) generates
the same output as above, although this iCa snippet is not nearly as readable:

imm int\
FOR N (in, out, tmp) {{
 fast_[N],\
}}\
;

As shown above, lines terminated by a back-slash (\) are output without starting a new line – this make
it possible to generate lists in a single line. This applies both inside a 'FOR loop' and directly before and
after a 'FOR loop'. The end of the 'FOR loop' would normally terminate such a generated list, unless the
final brace of the 'FOR loop' is also followed by a back-slash (\) as shown in the generated function
block call statement in the last example above. 

For those who don't like to see a comma followed by a semicolon ',;' at the end of a declaration, a
special characteristic of iCa index expressions can be used (see next paragraph). The value in square
brackets may be strings as well  as numbers,  since they are actually generated by Perl  code. To
generate a variable length – single line – declaration, use the following:

imm bit FOR N (0 .. 5) {{ a[N][N < 5 ? "," : ";"] }}

generates 

imm bit a0, a1, a2, a3, a4, a5;

Each execution of the second conditional index expression  [N < 5  ? "," : ";"] in the loop
generates a single comma, which is appended – the last execution of the index expression generates a
semi colon.

The 'FOR statements' for both types of 'FOR loop' and the associated twin braces are not copied to the
target except as comment lines, if the -a option is active for the immac compiler.

7.5    IF ELSE control statements
Sometimes it is necessary to suppress the output of code lines in a  'FOR loop' or to supply one or
more alternative output lines depending on some condition of the existing loop variables. This can be
achieved with an 'IF' or  'IF ELSE' control statement. The syntax and semantics is identical to  C
'if' or 'if else' statements – except that again the 'IF' and 'ELSE' keywords are upper-case not
lower-case. Even one or more 'ELSE IF' statements may follow an initial 'IF' statement followed  by
a final (optional)'ELSE' statement. ('ELSE IF' may be written as 'ELSIF' – it is translated to this form
anyway to execute as Perl code). The  'IF' conditional expression in parentheses may only contain
existing  'FOR loop' control variables and constants. No new control variable can be defined. Again
immediate variables may not be used in these expressions. The iC or C code controlled by an 'IF',
'ELSE IF'  or 'ELSE' statement must be contained in twin braces (like the 'FOR loop' ). The following
generates the same as the example in the previous section:

imm bit FOR N (0..5) {{ IF (N < 5){{ a[N], }} ELSE {{ a[N]; }} }}
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7.6    iCa index expressions
Index expressions  in  iCa are  expressions in  square brackets  involving loop control  variables  and
integer or  string constants.  Unlike  in  other  computer  languages these 'index'  expressions can be
placed anywhere in the iC code – not just as an index of an array variable. immediate array variables
cannot  even  be  declared  directly  –  they  come  into  existence  as  simple  immediate  variables  by
evaluating the index expression and replacing the square brackets by the numeric or string result of
that evaluation. The underlying simple  immediate variables must of course be declared (unless  not
strict (which you wouldn't, would you)). Such a group declaration is best done as follows:

FOR (N = 0; N < 10; N++) {{
imm bit a[N];

}}

Normally the square brackets are placed after a name, which then makes the array variables look like
those  in  C.  But  there  are  special  cases  where the square bracketed  index expression  is  placed
somewhere else, as we saw in the earlier examples (computing IEC-1131 I/O variable names).

The semantics of index expressions is, that the expression in square brackets is evaluated during the
execution of the immac compiler (written in Perl) as a Perl eval. The numeric or string result of the eval
replaces the square brackets and the expression they enclose. When the index expression is a simple
array reference, this generates a name followed by a number. The fact that evaluation of the index
expressions is done by Perl means, that the expression syntax and semantics of Perl integer arithmetic
apply, since  use int is declared in the  immac compiler. Since most arithmetic operators are the
same  for  Perl  and  C,  this  is  not  of  great  consequence.  One  notable  exception  is  the  Perl
exponentiation operator **, which may be used in FOR loops and index expressions with good effect:

FOR (J = 0; 2**J < 16; J++) {{
imm int mask[J] = [2**J];

}}

generates

imm int mask0 = 1;
imm int mask1 = 2;
imm int mask2 = 4;
imm int mask3 = 8;

Any iC or C code may have strings which contain the backslashed characters '\n' or '\t', which stand for
a Newline or a Horizontal tab both in  C or in Perl and also in  iC. These special characters do not
actually execute as a Newline or a Tab until the final machine code executes. 

FOR (I = 0; I < 4; I++) {{
printf(“Hello world\t%d\n”, [I]);

}}

generates

printf(“Hello world\t%d\n”, 0);
printf(“Hello world\t%d\n”, 1);
printf(“Hello world\t%d\n”, 2);
printf(“Hello world\t%d\n”, 3);

Not brilliant code but notice that '\t' and '\n' are correctly preserved in the generated iC code strings. 

An exception to this rule are '\n' and '\t' characters contained in string expressions of an  iCa index
expression in square brackets. These '\n' and '\t' characters are converted to a Newline or Tab directly
in the conversion from iCa to iC code. This allows the embedding of real Newlines or Tabs in lists of iC
code generated by a FOR loop.

imm int trans = \
FOR (I = 0; I < 16; I++) {{

IX[I/8].[I%8][I==16-1?”;”:I%4==3?” |\n\t\t”:” | “]\
}} // | NL TAB TAB after each group of 4 generates:

imm bit trans = IX0.0 | IX0.1 | IX0.2 | IX0.3 | NL
   TAB TAB = IX0.4 | IX0.5 | IX0.6 | IX0.7 | NL
   TAB TAB = IX1.0 | IX1.1 | IX1.2 | IX1.3 | NL
   TAB TAB = IX1.4 | IX1.5 | IX1.6 | IX1.7;

Normally index expressions occur in  iC code in a 'FOR loop'. I deliberately say  iC code and not  iC
statements, because 'FOR loops' are used not only to generate lists of statements, but also lists of
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parameters – both for the definition and the call of function blocks, whose parameter lists can be varied
at compile time. Another use is varying constant parameters. Inside a 'FOR loop' or a nest of 'FOR
loops',  the  iC code use the 'FOR loop' control variable(s) in the index expression(s) to make each
repeated iC code line different.

For index expressions in immediate C code outside of a 'FOR loop', the expression must be a constant
expression – no variables are allowed (remember no 'FOR loop' control variables are in scope anyway).
Nevertheless an iC variable, which is used as an indexed array variable inside a 'FOR loop' looks better
if it follows the same syntax outside of the loop. The variable a[1] could of course be written as a1 –
this is the same immediate variable. But inside a loop it must be written as a[N] and only the varying
value of N will generate a0 a1 a2 etc. 

Index expressions in embedded  C code – either in a literal  block or in a compound  C statement
controlled by an immediate if else or switch statement may have index expressions, but they are
part of the  C code and are not changed except index expressions, which contain an in-scope 'FOR
loop' control variable. This means that the translation of constant index expressions – as described in
the previous paragraph - are not carried out in embedded C code. In the rare instances where such a
translation is needed, it must be done manually – write a1 instead of a[1]. 

A special case in embedded C code occurs, if a numeric value generated by the control variable of a
'FOR loop' must be placed inside the square brackets of a  C array reference. This can be done by
simply embedding the iCa index expression in the C index expression – e.g.:

if (IX0.0) {
int Carray[3]; // start of embedded C code

FOR (N = 0; N < 3; N++) {{
Carray[[N]] = iCarray[N];

}}
}

generates

if (IX0.0) {
int Carray[3]; // start of embedded C Code
Carray[0] = iCarray0;
Carray[1] = iCarray1;
Carray[2] = iCarray2;

}

As can be seen in the above example, iCa 'FOR loops' may be embedded in C code – this is the reason
why the keyword 'FOR' was chosen instead of 'for' – the C code may also contain C 'for statements'.

To  sum up,  immediate  arrays  are  not  declared  as  such  –  variable  names  are  used  with  index
expressions in square brackets. The programmer must be aware that this generates simple immediate
variables starting with the array name followed by a number. Such generated variable names cannot
be used anywhere else – this would show up as a multiple declaration during iC compilation. If we use
a one-dimensional array in an iCa program – e.g. sa, any array reference will simply have a number
appended to the array name in the generated iC code. 

i = 2,            sa[i]    generates sa2
i = 22,           sa[i+1]  generates sa23

7.6.1    Multi-dimensional index syntax
A  special  case  are  multi-dimensional  arrays.  If  we  use  the  standard  C syntax  to  write  a  multi-
dimensional array reference, e.g. ma[i][j], and the immac pre-processor did not take special action,
we would get the following erroneous compile output for the following pairs of index values:

i = 2,  j = 34    ma[i][j] would generate ma234 // NOT output
i = 23, j = 4     ma[i][j] would generate ma234 // NOT output

This would be unsatisfactory, because it is ambiguous – therefore immac inserts a letter x between
adjacent numeric index expressions, producing the following correct output instead:

i = 2,  j = 34    ma[i][j] generates ma2x34
i = 23, j = 4     ma[i][j] generates ma23x4

This is no longer ambiguous. Any multiple index is separated by an x, which is easily recognised in the
generated iC code as a member of a multiple-dimensional array – even the numeric index values can
be recognised easily in the generated names. 
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Both in C and by analogy in immediate C with arrays (iCa), array names and the index expressions in
square brackets (and of course the expressions in the square brackets) may be separated by spaces
and tab's – as follows:

i = 2,  j = 34    ma   [ i ]  [ j ]   still generates ma2x34
i = 23, j = 4     ma   [ i ]  [ j ]   still generates ma23x4

One caveat applies for  immac:  such an array name with all its subsequent square bracketed index
expressions must be in the same line  .   (In C any sort of white space is allowed).

Another case where immac inserts an extra character are array names which finish with a numeral.
This could also lead to ambiguity if special action were not taken:

i = 2,            sa9  [ i ]          generates sa9y2
i = 22,           sa9  [ i+1 ]        generates sa9y23

Although the way  immac handles array names, which finish with a numeral avoids ambiguity, such
names should be avoided, because in the generated iC code they look too much like expanded array
names with an extra index, which could easily lead to clashes. To avoid this clash a y is inserted in this
case.

String index expressions in square brackets, which contain a string value in parentheses, e.g.

[N < MAX ? "," : ";"]

are not separated from an adjacent index expression by x or y.

In every case, the names generated from numerical indexed single- and multi-dimensional array
references are well formed iC variables, which show their name and index value(s).  The main
thing to remember with array references is, that every array reference translates to a simple iC variable
name, which shows up in the generated iC code, which will normally be a lot longer than the iCa code,
but which can then be used for live debugging with  iClive. The mental translation between indexed
array references and the resolved iC names is so simple, that it should not cause any problems to the
user.

7.7  Differences between iC and iCa code
Straight immediate C code is usually made up of short statements declaring the relationship between
input and intermediate variables to output or intermediate variables - very similar to PLC code, which is
easy to understand by technicians. It presents a clean picture of control expressions acting on control
variables, which build up to a clear picture of the interactions with the plant to be controlled. This
interaction is most clearly visible when a live display is active, where individual changes in the real
plant parameters show up as colour coded state information in the code. This PLC style of coding is a
very important aspect of producing immediately understandable and straight forward control programs.
This was   an   important design consideration for the   immediate C   language  .

On  the  other  hand  iCa code  with  arrays  introduces  another  level  of  algorithmic  loops,  control
statements and indexing in the middle of iC code for generating larger parametrised blocks of iC code.
Frankly the actual iC code required is hidden quite deeply and it requires a certain amount of skill when
developing iCa code snippets, to simply concentrate on what is to be generated and adjust the looping
and control algorithms accordingly. Translating the code with the immac compiler frequently is the best
way to see what iC code is actually generated, which can then be checked to see if it is really the iC
code envisaged. In fact I found it important to code a small block of iC code first to lay down the control
strategy. Once that is fixed, repeating statements can be rolled into loops fairly easily. Comparing the
generated code with the hand coded part using diff confirms that iCa loop and control algorithms are
correct.
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Here is a hand coded iC program segment which can then be made variable in length:

imm clock c0 = CLOCK(T1sec, ~T1sec);

imm bit m0, m1, m2, m3, m4, m5, m6, m7, m8;

QX0.0 = m0 = SR(~m8,      m8 & ~m1, c0);
QX0.1 = m1 = SR(~m8 & m0, m8 & ~m2, c0);
QX0.2 = m2 = SR(~m8 & m1, m8 & ~m3, c0);
QX0.3 = m3 = SR(~m8 & m2, m8 & ~m4, c0);
QX0.4 = m4 = SR(~m8 & m3, m8 & ~m5, c0);
QX0.5 = m5 = SR(~m8 & m4, m8 & ~m6, c0);
QX0.6 = m6 = SR(~m8 & m5, m8 & ~m7, c0);
QX0.7 = m7 = SR(~m8 & m6, m8,       c0);
QX1.0 = m8 = SR(~m8 & m7, m8 & ~m0, c0);

This is the required iCa code which is not as clear cut, but does generate blocks of any length:

%%define LAST 8 // iCa control statements are highlighted

imm clock c0 = CLOCK(T1sec, ~T1sec);

imm bit FOR (I = 0; I <= LAST; I++) {{ m[I], }};

  FOR (I = 0; I <= LAST; I++) {{
QX[I/8].[I%8] = m[I] = SR(~m[LAST]\
   IF (I == 0     ) {{[",     "] }} ELSE {{ & m[I-1],}} m[LAST]\
   IF (I == LAST-1) {{[",      "]}} ELSE {{ & ~m[(I+1)%(LAST+1)],}} c0);
  }} // highlighting as in iClive

iClive colours iCa control statements pink and index expressions gold, which helps in untangling iCa
code. Saving that code as genBar.ica, the following call will generate the code below the call:

$ immac -P LAST=16 genBar.ica > genBar.ic
imm clock c0 = CLOCK(T1sec, ~T1sec);

imm bit m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, 
m15, m16;

QX0.0 = m0 = SR(~m16,      m16 & ~m1, c0);
QX0.1 = m1 = SR(~m16 & m0, m16 & ~m2, c0);
QX0.2 = m2 = SR(~m16 & m1, m16 & ~m3, c0);
QX0.3 = m3 = SR(~m16 & m2, m16 & ~m4, c0);
QX0.4 = m4 = SR(~m16 & m3, m16 & ~m5, c0);
QX0.5 = m5 = SR(~m16 & m4, m16 & ~m6, c0);
QX0.6 = m6 = SR(~m16 & m5, m16 & ~m7, c0);
QX0.7 = m7 = SR(~m16 & m6, m16 & ~m8, c0);
QX1.0 = m8 = SR(~m16 & m7, m16 & ~m9, c0);
QX1.1 = m9 = SR(~m16 & m8, m16 & ~m10, c0);
QX1.2 = m10 = SR(~m16 & m9, m16 & ~m11, c0);
QX1.3 = m11 = SR(~m16 & m10, m16 & ~m12, c0);
QX1.4 = m12 = SR(~m16 & m11, m16 & ~m13, c0);
QX1.5 = m13 = SR(~m16 & m12, m16 & ~m14, c0);
QX1.6 = m14 = SR(~m16 & m13, m16 & ~m15, c0);
QX1.7 = m15 = SR(~m16 & m14, m16,       c0);
QX2.0 = m16 = SR(~m16 & m15, m16 & ~m0, c0);

The above also demonstrates how -P LAST=16 has precedence over %%define LAST 8.

7.8  immac Macro facility
The pre-compiler  immac provides a full  macro facility  very similar  to that provided by the  C pre-
processor cpp. Object like macros without parameters as well as function like macros with parameters
in parentheses are supported. The keyword to introduce an immac macro definition is %%define not
#define; that is reserved for  cpp or  immac -m. The latter is an alternative to  cpp and is used in
conjunction with the full iC compiler immcc to resolve C type macro's in embedded C code fragments.

%%define LENGTH  4

The same macro term LENGTH could also be pre-defined in the command line with the -P option:

immac -P LENGTH=4 
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Unlike cpp, the definition in the command line has precedence over the definition with a %%define line
in the program. This allows iCa programs to define default values for macro terms, which can be re-
defined in the command line. It is an error to %%define a macro, which has been previously defined
(except on the command line, in which case the new definition is ignored). The command %%undef X
will undefine the macro X, which can then be re-defined. This is important if an internal definition is to
have precedence over a (possible) command line definition – do a %%undef first. It is not an error to
%%undef a non-existing macro. 

Macros must be a word starting with a letter or underscore followed optionally by letters underscores or
decimal digits (same as a C or iC identifier). It is highly recommended that letters in a macro are all
upper case (same recommendation as for  cpp). Macro replacements can be any sort of text, which
may also include previously defined macros.  For replacement as index values, they should of course
reduce to numeric values or string constants.

%%define WIDTH  (5+1) /* C comment */
%%define AREA  (LENGTH * WIDTH) // C++ comment

iClive displays macro variables in italics, both in the definition and wherever they are used.

If a replacement text is longer than one line, each line except the last must finish with a backslash \
As shown above %%define lines may be terminated with a C or C++ comment. Replacement texts may
also contain embedded C comments, which will be replaced by a single space on expansion. Multiple
spaces will be replaced by one space (same as cpp). As with 'FOR loop' control lines, a C comment
must finish on the %%define line. Replacement texts for function like macros should contain at least
one sample of each parameter text. If not a warning will be issued.

Parameters may be 'stringified' in the replacement by preceding them with a single #. Two parameters
or indeed any words may be concatenated by placing ## between them. Every effort has been made
to obtain the same translations for replacement texts as those obtained by using cpp.

There are some deliberate minor differences. Replacements which resolve to a constant arithmetic
expression involving only the operators + - * / and % as well as ( ) decimal integers and spaces
are evaluated in the definition. This brings error messages a little closer to the source of any erroneous
constant expression. The final result is the same though.

For  the 2nd macro  above  immac translates  %%define AREA to  48 whereas  immac -m and  cpp
translate #define AREA to (8 * (5+1)).

The %%define lines are not copied to the target except as comment lines, if the -a option is active for
the immac compiler.

Macro replacements may be made in all parts of the iCa code. They are of course particularly useful to
parametrise the termination of a 'FOR loop'  and hence the number of  blocks of  iC code, which is
generated by the ' FOR loop'.

File inclusion with %%include "file" and conditional compilation with %%ifdef, %%ifndef, %%if,
%%elif, %%else, %%endif and %%error are also supported using the same rules as cpp. The word
defined in an %%if or %%elif expression has the usual cpp meaning - it is set to 1 (true) if defined
else 0 (false). Identifiers in such an expression which are not defined in a previous %%define or -P are
also set to 0 (false).

7.8.1  Alternative immac Macro options
Calling immac with the  -m option,  immac acts as a straight ‘cpp style’ macro processor handling
#define, #undef, -D, -U, #include, #if, #else etc.  No iCa constructs are translated in this mode.
Every attempt has been made to make  immac -m equivalent to  cpp.  This option is used as a pre-
compiler for generated C code when compiling iC programs with immcc.

Calling immac with the  -M option,  immac acts as a straight  macro processor  for  iC code handling
%define, %undef, -D, -U, %include, %if, %else etc.  Again no iCa constructs are translated in
this mode. This option is used as a pre-compiler for iC code when compiling iC programs with immcc.

Calling immac with the -Y option, immac acts as a special macro processor handling %if, %else etc.
directives only.  This enables optional compiling for  yacc,  bison or  flex;  %define directives are left
untouched – they are used as macros directly by bison.



52

8    The iC IDE and Debugger iClive

This chapter describes iClive, an Integrated Development Environment (IDE) for editing, running and
debugging  iC programs. An important feature of  iClive is a ‘live display’, which is standard for PLC
programming  units  but  is  not  used  for  debugging  instruction  flow  programs.  Another  feature  are
‘Watchpoints’  rather  than  ‘Breakpoints’  for  stopping  execution  of  the  running  program  at  some
interesting  point.  ‘Breakpoints’  are  meaningless  for  event-driven  programs,  whereas  an  efficient
implementation of ‘Watchpoints’ is easy to do for event driven programs. They are relevant and very
powerful for locating bugs. ‘Watchpoints’ can monitor all state changes of marked immediate variables,
or they can monitor a particular ‘condition’, usually a change to a particular value.

iClive  is a client of iCserver, similar to all running iC applications and I/O's. On start up iClive will fork
iCserver -A iCbox,  unless  iCserver is  already  running.  This  will  automatically  autovivify  the
correct iCbox when an application is started with the Run button. An alternative command to autovivify
may be entered with the -A option: eg -A iClift or -A 'iCbox -H' If iClive started iCserver, it
will also stop iCserver when it is stopped, which automatically stops all running applications and I/O's.

iClive  can execute in two major modes: Edit mode and Live mode. The program starts in Edit mode,
which – as the name implies – provides full text edit functions for any text in the main window. This
functionality is provided by the Tk::Text widget of the Perl/Tk tool kit, on which iClive is based. The
edit functions provided by  Tk::Text are very similar to the basic functions of Notepad and MS Word
under Windows or Kate and LibreOffice Writer under Linux. A detailed description can be found under
the Heading ‘KEYBOARD BINDINGS’ in the iClive man page, which is shown with the Help button.

The text in the Edit window is assumed to be an iC or iCa program with some optional embedded C
code or a listing. When opening a new file or saving a modified text, the following formatting is done:

• Any C or C++ style comments in iC and C code are coloured blue, eg.  // my comment

• Any embedded C code in a literal block bounded by %{ C code %} braces as well as C code
blocks initiated by the  iC operators  if else or  switch and bounded by matching simple
braces are marked pale grey, eg.  if (x) { more C code /* with  comment */ }.

• All  iC keywords and built-in function block names in  iC code and C keywords in  C code are
made bold, eg immC bit var;. C keywords not also iC keywords in iC code are errors and
coloured red and vice versa.

• All C pre-processor commands #include,  #define etc in C code, as well as all iC and iCa
commands %define and %%define etc in iC or iCa code are made bold italics. Macro names
defined with #define, %define or %%define are displayed in italics throughout the code.

• The following colouring is done to make iCa code more readable:

◦ FOR and IF ELSE control statements up to and including the opening double brace {{ as
well as the closing double brace }} are coloured with pink background. 

◦ The first non-keyword after FOR, which is the loop control variable, is marked bold with a
raised relief.  Every occurrence of a  FOR loop control variable is marked similarly in the
scope of the loop. FOR loop control variables thus raised should only occur in inner FOR
and IF control statements marked pink or index expressions marked gold.

◦ Every  inner pair of matching square brackets enclosing an index expression is coloured
gold eg [I+1], except the text in string constants in index expressions in iC code, which
are part of the underlying iC code.  Outer pairs of nested square brackets, which will be
transferred unchanged to the  iC or  C code are also left untouched. A side effect of this
colouring strategy is that the square bracketed index elements if immediate arrays in plain
iC code are also coloured gold eg var = array[0]. There should be no  iC variables
and hence no index expressions –  indeed no variable which is not a  FOR loop control
variable or a macro - in FOR and IF control statements with a pink background. If they do
occur they are a syntax error and will be marked in red.

• In analysing the program text for this formatting quite a number of syntax errors are detected.
The error elements are marked bright red and appropriate warnings are output to STDERR.
At the end of the analysis the number of syntax errors is reported in the status bar at the
bottom of the IDE Window. This helps to avoid simple syntax errors when writing iCa code.
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Across the top of the Edit window is a Menu bar with the following labels – most of which have pop
down menus:

• File

◦ New empty file for editing.

◦ Open and load the selected file.

◦ Reload the current file (usually modified externally).

◦ file.lst switch file between iC-source and iC-listing.

◦ Save the current file if modified.

◦ SaveAs store the current file at the selected path.

◦ Quit the program.

◦ ==== followed by a list of files recently opened

• Build

◦ Build executable from source in the Edit window.

◦ Save source & build executable unconditionally.

◦ Build C file only.

• Run Stop run the current program after it is built or stop it if running.

• ▬ select no instance or  -0 to  -9 or extra instance passed with the  -i option.

Run or Live use the selected instance when several instances of the
same program are running.

• Live Edit Toggle between Edit and Live mode.

• ⁄ Start or continue a search of the word, exact match or regular expression in the
Search Entry Window. Different match types can be selected.

◦ Search down

◦ Search up

◦ Clear the search.

◦ Go to line

◦ Word match

◦ Exact match

◦ Regexp match

◦ Ignore case toggle case sensitivity for all match types.

◦ ==== followed by a list of searches recently executed

• Search Entry Window Enter search text.

• - Zoom out decrease font size.

• + Zoom in increase font size.

• Debug Display a semi-permanent Debug menu

◦ Debug Turn Debug mode on or off. In Debug mode Watchpoints can be marked and 
will freeze the currently running program when activated.

◦ Single Mark all immediate variables in the current source as temporary Watchpoints
and proceed to the next temporary or normal Watchpoint.
For iC source programs eg file.ic this precludes compiler generated
immediate  variables,  whereas  for  listing  files  eg  file.lst  compiler  generated
variables are visible and included as temporary Watchpoints.

◦ Next Mark all Output variables in the current source as temporary Watch points and 
proceed to the next temporary or normal Watchpoint.

◦ Continue execution until a marked Watchpoint satisfies its condition.

◦ Watch points Display a Dialog Box for editing Watchpoints.

◦ Trace Start  and  stop  detailed  debugging  output  from  the  executing  program.
This is most useful while single stepping.

◦ MicroSec Start and stop display of microsecond timing of execution steps.

• Help Display the iClive man page with iCman.
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8.1  Debug Menu options

8.1.1  File
The  New,  Open,  Save,  SaveAs and  Quit menu options follow standard procedure for other word
processors. The Reload option will reload a file from storage, thereby deleting any modifications that
have been made since last loading the file. This change cannot be undone.  The  Reload option is
commonly used when an iC source file has been modified in another editor and is reloaded into iClive
for testing. The menu option file.lst will actually show the base name of the current source file followed
by the extension which will be shown in the edit window when the option is pressed. 

• If the extension of the current source file is .ica, the extension shown is .ic

• If the extension of the current source file is .ic, the extension shown is .lst

• If the extension of the current source file is .lst, the extension shown is .ic

This means that one can cycle through showing  iCa,  iC source and  iC listing and then back to  iC
source with this menu option. Finally a list of files which have been edited previously are shown, which
can be selected for further processing. One use for this is to go back to an original iCa file.

8.1.2  Build
The Build executable menu option will first check whether the source has been modified and ask if it
should be saved first. Once saved or unmodified iCmake -fsAd200 file.ic is executed, which in turn
calls immcc to make file.c and then calls gcc to compile file.c and then link the generated object file
with either the static iC runtime library libict.a or the dynamic library libict.so.

The  Save &Build  unconditionally menu option will save the file unconditionally and carry out the
same build as above.

The Build C file only menu option will only build file.c from file.ic. This option is useful during early
development to check for errors in the iC file. In all three cases if an error occurs, the file displayed is
changed to the listing file with the leading text of Error messages shown in the Search Window. This
makes it possible to quickly search for all error messages in the generated listing.

If the source file in all the Build options above is an iCa file, that file is first converted to an iC file by the
pre-compiler immac.

Four miscellaneous actions can be carried out from the Build menu when the iC application generated
from the currently loaded iC source is running:

• display the Symbol Table sorted by name.

• display the Symbol Table sorted by index. The index is used at run time to identify variables.
Aliases have the same index as the variables they represent. Different instances of the same
variable base name have different indexes.

• Display a table of  iCserver Client Names and a table of registered Senders and Receivers
with  iCserver.  This  is  achieved  by  sending  a  message  containing  the  command  “T”  to
iCserver.

• Stop iCserver and all registered clients except  iClive. This is useful when preparing to load
the source of a different iC application. This is achieved by sending a message containing the
command “X” to  iCserver. The same mechanism is used to shut down all clients when the
File->Quit or the  button is activated, except in those cases iClive is also terminated.

8.1.3  Run/Stop
Run the current program after it is built or stop it if running. An iC program can also be run externally by
starting it in another text console. In both cases the program registers its I/O’s with iCserver and auto-
vivifies an  iCbox client for any I/O’s not already registered.  Once the program is running the text
displayed on the button is changed to Stop. On the other hand if a program is stopped by the button or
stopped externally, the text displayed on the button is changed to Run. It is advisable to stop iCbox
with its  button at this time to ensure a second Run of the program is not a modified version with
different I/O’s, which would then not be available in the old iCbox.

8.1.4    ▬  Instance
All iC clients are run with an instance ID. This allows several instances of the same iC client to run at
the same time. The I/O’s for each separate instance are identified by being extended with the instance
ID, which is either the null string or a number in the range -0 to -999. This makes I/O’s with the same
name but with a different instance ID completely separate entities identified at run time by a different



55

index number. The default instance ID is the null string, when no -i option has been specified when
starting a client externally. The same is achieved by running an iC app from iClive and not selecting a
numbered instance -0 to -9 or selecting the first null menu entry with the Instance button. The selected
instance ID is displayed on the Instance button. Run or Live use the selected instance. The selected
instance can be changed at any time to show the live state of that instance when debugging.

8.1.5  Live/Edit
Toggle between Edit and Live mode. iClive starts in Edit mode. If the Live button is pressed before
an iC application is running the text on the button is changed to wait, because live mode cannot be
active unless there is a running iC application. If an iC app is running or the Run button is pressed
while the button shows wait, live mode is entered changing the text on the button to Edit, which is now
the mode entered when that button is pressed again. 

In  Edit mode the text  in  the main window is  mainly  plain text  with  only  comments,  C code and
keywords highlighted as described above. The text shows an insertion cursor and may be modified
using the keyboard and mouse bindings shown in the Help text.

In Live mode the text is Read-Only – no insertion cursor is displayed and obviously the text cannot be
modified.  All  words  representing  immediate  C variables  of  the  currently  running  iC program are
displayed with a background and foreground colour to indicate the type and the current state of that
variable. The colours vary for different types of iC variables as follows:

• Logical variables of type imm bit: green/black for 0 or LO and yellow/red for 1 or HI.

• Arithmetic variables of type imm int: blue/black for 0 and blue/red for non-zero.

• Clock variables of type imm clock: brown/black and brown/white flash when activated.

• Timer variables of type imm timer: cadet  blue/black and  cadet  blue/white flash  when
activated.

iC variables  which change their  state  for  less  than 50 ms flash  their  text  white  in their  coloured
background momentarily to make them stand out.5

Inside a comment an iC variable name followed by an equal sign = at the very end of the line will cause
iClive to display the numeric value of that variable in live mode. This is mainly if interest for imm int
and imm timer variables, which can have numeric values other than 0 and 1. 

The current numeric value of all immediate variables can also be displayed in a balloon by hovering the
mouse cursor over a live immediate variable. Other parameters pertaining to an immediate variable
can be obtained in a balloon by hovering over the variable while also pressing the:

• Shift key: index of the variable in the S.T. - used in network messages.

• Ctrl key ftype of the variable as a long mnenomic.

• Ctrl+Shift key ftype of the variable as a number.

Note: the iClive text window must have focus for KeyPress and KeyRelease to be recognised.

For  Live mode  to  be  effective,  the  displayed  text  must  be  either  the  source  of  the  running  iC
application or a text derived from that source, such as the  iC listing.  Whenever a new  iC text or
another instance is selected, iClive will automatically attach itself to the selected application (provided
it is running).  iClive shows the statements of the source and the colours will show what the current
state of all logical and arithmetic variables in the statements is.  It is easy to inspect such a live listing
and relate states with the logic of the application.

8.1.6  /  Search - SearchEntry Window
A powerful search facility to find whole words, exact parts of a string or Perl type regular expressions
has been implemented on top of Text::Tk.  Activate the search by typing '/' or pressing the [/] button
briefly.  Enter or paste a word into the Search Entry window and type RETURN or press the [/] button
again.  Searches may be for a whole Word match, an Exact match or for a full  Perl-type regular
expression.  Searches are normally case sensitive, but a case-insensitive search may be selected.
Once a search has been carried out, all the hits are highlighted (black with white text). A first group of
hits is displayed in the Text window. The text is moved to display as many hits as possible. When the
user has analysed the first group of hits, typing RETURN will display the next group of hits in the text
and so on until the end of the text is reached. Another RETURN will start by displaying the first group
at the top again. Typing SHIFT-RETURN will reverse the direction of displaying the groups.  Holding

5This flashing was copied from the behaviour of the Hewlett Packard Logic Probe, which flashed long enough to see for pulses

even less than a microsecond. This was so useful for fault finding in IC circuitry.
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down the search button  [/] will open a menu with the different search options 'Go to line', 'Word
match', 'Exact match' or 'Regexp match'. The 'Ignore case' button applies to the 3 search modes.  This
is followed by a history of previous searches - most recent at the end, which can be selected for a
repeat search. This search menu can be detached with the tear line ---------.

In  Live mode searches are restricted to text outside of comments, which means searches will only
return actual variables and keywords in program text.

In Live and Edit mode but not in Edit Undo mode (-u option), double-clicking with mouse button 1
transfers the word under the mouse to the Search Entry window and immediately starts a search for
that word. This is the quickest and best way to start a search.  The search can be continued by clicking
on the [/] button or pressing RETURN.

This  quick search action masks the selection of  the text  under the mouse  in  Edit mode.  Since
selection of text can be accomplished easily by swiping a word or stepping over the word with the Shift-
Left key it was felt the quick search action is more often called for. The quick search action is not active
in Edit Undo mode.

Double-clicking with mouse button 1 with the cursor  in the Search Entry window or by typing Crl-
RETURN will clear the search completely.

In Edit mode single-clicking with mouse button 1 or moving the insert cursor with the keyboard over a
brace, parenthesis or square bracket will highlight matching braces, parentheses or square brackets.
Double-clicking with the cursor  on a brace, parenthesis or square bracket  character will  move the
insert cursor to the matching braces etc.

The  position  of  the  displayed  text  may  be  manipulated  by  the  scroll  bar(s)  or  the  usual
up/down/prior/next/home/end keys.  A useful feature is the use of the middle mouse button to fast
scroll in all 4 directions through the text.

Tk::Text will open a dialog box when clicking the right mouse button in the text window. The features
provided are self explanatory. It also has a search feature, which did not seem to be available when I
started. The really useful feature there is the search/replace facility. Another useful feature is changing
the wrap mode.

8.1.7  -  Zoom out
Decrease the font size of the text window.

8.1.8  +  Zoom in
Increase the font size of the text window.

8.1.9  Debug
Pressing the Debug button opens a semi-permanent menu with debug options.  Debug mode is turned
on immediately if an iC program is running and Live mode is on.

While  Debug mode is on, pressing Mouse Button-1 while positioned over an  Active variable in the
program text will open a menu to enter/delete/disable a WatchPoint or an IgnorePoint.

A WatchPoint is the equivalent of a breakpoint in a data driven environment. It triggers when
an Active node variable changes (the default condition) or its condition, which may be set in a
cascaded dialog, turns true.  Unconditional WatchPoints are marked in the code by underlining
the variable name with a thick line. Conditional WatchPoints are underlined with a wavy line.

An  IgnorePoint is an Active node variable which will not stop during single step operations
'Step'  or  'Next'.   This  allows  certain  sections  of  the  iC code  to  execute  normally  without
stopping while single stepping.  The Timer variables TX0.3 - TX0.7 are marked as IgnorePoints
initially to avoid single stepping to be interrupted regularly by Timer ticks.  IgnorePoints are
marked in the code by crossing the variable name with an overstrike.

Disabled WatchPoints or IgnorePoints are marked with a thinly dotted line.

The following buttons control debug actions:

• Debug Turn Debug mode on and off. When turned off the Search Entry window is grey. It
turns pale green when the program is running and Debug mode is on.  At the next change of
any WatchPoint the program will stop and the Search Entry window will turn pink.  With Debug
mode on the following three buttons, which control debug actions, are activated:

• Step run the program until the next change of any Active variable in the current source.
Since intermediate variables generated by the compiler are only contained in  iC listing files,
single stepping on changes of intermediate variables will only work with listing files, where the
changes can also be seen. (Switch between .ic and .lst with Alt-l).
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• Next run the program until the next change of any output variable (Q...) in the current
source. Step or Next can be pressed at any time while the program is running and Debug
mode is on to interrupt the program.

• Continue run the program until a WatchPoint is reached and its condition is satisfied. If there
are no WatchPoints the program will run without stopping. This is the initial mode when Debug
mode is turned on.

In all three cases, pressing any of the three buttons will run the program again and turn the Search
Entry window pale green. At the next change appropriate for the button pressed the program will stop
and turn the Search Entry window pink.  The name of the variable, whose change made the program
stop, and its value will  be displayed in the Search Entry window.  This is the  Break variable.  All
instances of the Break variable will be highlighted in the current window by raising the text and making
it bold. If there are more instances of the Break variable outside of the current window, these can be
found by initiating a search with the [/] button or the Return key.  The latest  Break variable and its
value is also displayed in the Info Bar at the bottom of the screen.

Debug mode is turned off  in Edit mode and must be turned on manually when entering Live mode.
Previously set Watch- and IgnorePoints will then become Active again.

There are three further buttons in the Debug menu:

• WatchPoints list all Watch and Ignore points. Selected points may be deleted, disabled,
enabled or have their  conditions changed from this list.  The 'Lookup'  button starts a full
search for all instances of a selected Watch or Ignore point in the program. ('Lookup' turns
Debug mode off).

• Trace toggles a trace output of every action of the data driven execution of the iC
code in the terminal window iClive was called from. It is roughly equivalent to the machine
language output of an instruction driven debugger.  This output is particularly useful with
single stepping.  It shows all the detailed actions of counting Logic nodes, Arithmetic actions,
as well as Clock and Timer actions leading up to a Break.

• MicroSec show  the  time  in  microseconds  between  significant  events  during  the
execution of the program.

All  the  buttons  on  the  debug  menu  and  some  of  the  other  pop-down  menus  show  keyboard
accelerators, which allow the actions to be initiated from the keyboard when the main text window of
iClive has  the  focus.  This  procedure  is  very  similar  to  debuggers  and IDE’s  for  other  computer
languages.

8.1.10  Help
The  Help button will open another window running  iCman displaying the  man page for  iClive. The
man page gives detailed information on the command line switches available for  iClive followed by
details of the menu options (which are similar to the details in this chapter). Important information in the
man page are a detailed listing of the Keyboard Bindings in Edit mode, which have been taken from
the Tk::Text man page. These details explain precisely how text in the Edit window can be manipulated
with the keyboard and the mouse. These Keyboard bindings are fairly intuitive and follow the behaviour
of similar editors like Notepad and Kate, which means that it should not be necessary to look up these
details often. They are very different to the editor vi though.

Since vi is very popular for program editing I have included files ic.vim, filetype.vim and wulff.vim in the
distribution to provide proper syntax high-lighting for  iC files in  vi. I  have also included  ic.ssh and
sheets.map to provide syntax-highlighting for a2ps – the pretty printer available under Unix/Linux. All
these files are in the folder AuxTools in the GIT repository. Instructions on where these files should be
copied to are in each file. These syntax-highlighting features have only been tested under Linux.



58

9    I/O drivers and iCserver

This  chapter  describes  virtual  and real  I/O  drivers  and how these are  integrated into  a  complete
network with compiled iC applications via a common server called iCserver.

Most  input and output in the  iC system is via short  messages transported by TCP/IP connections
between iC components, which may be  iC applications or I/O drivers. All TCP/IP I/O messages are
routed through a central server called iCserver. Both iC applications, I/O drivers and optionally iClive
can be clients of iCserver, which is started by the first client, unless it is already running. On start-up of
each  client  it  opens  a  TCP/IP  connection  to  iCserver and  registers  itself  with  iCserver.  More
importantly the client registers each input or output word it wants to send or receive by its IEC-1131
name (bit I/O’s are grouped into one 8 bit byte for transmission). The client also states, whether it is a
Sender or Receiver for the named  IEC-1131 word. iCserver allocates a channel number for each word
which is registered (unless two different words are equivalenced, which will be discussed later). Only
iCserver channel numbers, which are small integers, are used in the actual I/O messages, which are a
comma separated list of pairs as follows:

<channel number>:<value>

Example for 4 simultaneous, but independent values on channels 10, 12, 14 and 22:

10:2,12:128,14:0,22:500

Values are also decimal integers. iCserver monitors that only one Sender is registered for each IEC-
1131  name.  There  may  be  more  than  one  Receiver  per  name.  IEC-1131  output  names  for  iC
applications, e.g. QX0 or QB1 are Senders, whereas they are Receivers for I/O drivers. The reverse is
true for IEC-1131 input names, e.g. IX2 or IW3, which are Receivers for iC applications and Senders
for I/O drivers. I/O drivers may be virtual drivers e.g. iCbox, I/O for GUI driven canvases, e.g. iClift or
real I/O drivers e.g. iCpiFace for one or more PiFace boards and the GPIO’s on a Raspberry Pi.

For the Raspberry Pi there is an alternative driver to iCpiFace, which completely by-passes iCserver.
Instead of sending TCP/IP messages, this driver is implemented in the iC run-time library, linked to an
application and connects input and output events generated by the application directly to the outputs
and inputs of the PiFace boards and the GPIO’s on a Raspberry Pi. This type of real I/O is 10 to 50
times faster than I/O via iCserver, although that is already fast compared with relay logic or PLC’s (0.9
ms on an Rpi 2B, 2.8 ms on an Rpi B or B+). 

A similar direct driver for the Interbus system for Phoenix Contact industrial I/O devices and another
driver for a Fieldbus system had been written and tested successfully during early development of the
iC system but were abandoned when interest for industrial applications was not forthcoming. 

Processor 2

1
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iCbox

2

iCbox

3

iCbox

iC application 1
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There are no plans to implement interpretation of JSON messages from IoT devices, although that
would be possible. The  iC message protocol is very similar to JSON, but much shorter and more
direct.  It  was designed and implemented about 10 years before JSON first  arrived in 2002. Some
authorities believe JSON overloads the capabilities of processors in IoT devices and there are shorter
protocols on the drawing board. See:

REST Without JSON: The Future of IoT Protocols - The JSON/HTTP model may not be the best fit for
IoT technologies.

9.1  iCserver
iCserver acts as a router for a number of iC clients in a network, who send data to each other. Each
client connects via TCP/IP to iCserver on a specified port (8778 is the default at the moment).  Only
one  iCserver on one port may run in a network.  It is possible to run several  iCservers on different
ports.  Clients can connect either via 'localhost' (default for  iC clients) when they run on the same
processor as iCserver or via the host address of the processor iCserver is running on.  On connection
each client registers itself with iCserver.

Clients for iCserver are iC control applications, I/O clients such as iCbox or similar real I/O clients and
debugging programs such as  iClive.  These clients either send or receive data values from and to
named I/O locations or debugging information.  As far as  iCserver is concerned I/O locations could
have any name, but the  iC language calls for I/O names or addresses according to the IEC-1131
standard. Data values can be 8 bit bytes (e.g.: IB1 QB9), 16 bit words (IW2 QW10), 32 bit long words
(IL4 QL12) or 64 bit huge words (IH8 QH16), although huge words have not been implemented in any
client so far.  Bit values like IX0.0 IX0.1 QX8.2 QX8.3 are always transmitted as bytes - in this case
via IX0 and QX8, which are the names used for registration. Whenever any bit in the byte changes, the
whole byte is transmitted. Each client registers the I/O names it requires on connection to  iCserver.
Each unique name is stored in a Hash in iCserver, whose value is a channel number, which is used for
all actual data transfers. The Hash is only required for registration. Each channel allows the naming of
one Sender for data on the channel (or I/O name) and one or more Receivers for the data. A detailed
description is in the Specification in the iCserver man page.

Additional functionality in iCserver.

a) Equivalences - or interconnection of different I/O addresses in iCserver. This option puts two
or more entries in the Hash and assigns them a common channel number. Send or receive
entries associated with the channel are undefined at this stage. Then when registration of
one of  the equivalence names occurs,  the common channel number is  used. With this
option different IEC-1131 addresses can be assigned to the same channel, thereby making
them equivalent or interconnecting them.

This functionality is required when the output of one iC control application is to be the input
for  another  iC control  application  (often  a  different  instance  of  the  same  application).
Several equivalences may be specified. The order of the equivalence is not relevant (it is not
an assignment). For correct autovivification outputs should be named first though.

Example 1:

iCserver -e QX7-0=IX7-1,QX7-1=IX7-0

This connects QX7 of instance 0 with IX7 of instance 1 via a common channel and QX7 of
instance 1 with  IX7 of instance 0 via another  common channel. Equivalencing an output
and an input of the same instance is possible but rather useless and much slower than
using internal variables (it may be useful for testing).

Equivalencing is also required if one external I/O source must be connected to the input of
more than one iC control application.

Example 2:

iCserver -e IX8=IX8-0=IX8-1,IX9=IX9-0=IX9-1

This sets up common inputs IX8 and IX9 from an I/O driver to two instances of the same
control app. Naming the other inputs with the same base IEC-1131 address is not necessary
but highly advisable for transparency in the documentation. The first address is used for
autovivifying an iCbox if it does not exist already. Autovivification does not take place for a
channel, until a receiver has been registered for that channel and all other registrations have
taken place.

Equivalencing  two  or  more  output  addresses  (Q...)  will  lead to  an  error,  if  both  output
addresses register as senders in an iC control application - this would lead to two or more

https://dzone.com/articles/json-http-and-the-future-of-iot-protocols
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senders on the same channel. When the second or later output sender registers, the error
will  be reported. A similar error will  be reported if  a second external input device in an
equivalence chain is registered as a second sender. This would happen if both IX8-0 and
IX8 were started as separate iCboxes after the equivalence statement in Example 2 above.
In rare cases two outputs may be legitimately equivalenced if  an  iC application uses a
certain output name and a real output with a different name must be used to accept that
output. This practice is highly deprecated, because transparency in the documentation is
lost.

Formally equivalences consist of two or more IEC base identifiers followed by an optional 1
to 3 digit instance specifier separated by an equal sign '='. Several equivalences may be
specified in a comma ',' separated list or several equivalence parameters may be used.

It is not allowed to equivalence IEC identifiers of different types, since the consequences are
not what is expected. This is reported as a hard error.

Equivalences can also be defined later by an  iC app for input IEC variables in that app
before the variables are registered.

b) Autovivification

-a option - automatic  start-up of one or more  iCbox widgets.  When a control application
registers its I/O's, 'iCserver -a' starts up a matching 'iCbox' for all complementary I/O's,
which have not already been registered. With the  -a option, clients must be started in a
particular order:

i) iCserver -a   # always first anyway.

ii) any  manually  started  I/O's  with  real  I/O  or  specific  ranges  etc.  or  because  of
equivalences (optional).

Iii) iC control  application(s),  which  causes  iCserver to  autovivify  any missing  I/O's  as
iCbox virtual IO’s with appropriate ranges for each app.

Alternatively starting an iC -d option - automatic startup of one iCbox -d, When a control
application  registers  its  I/O's,  iCserver -d  starts  up  a  matching  iCbox -d for  all
complementary I/O's for monitoring. Outputs are the same but inputs will only display their
value and cannot be changed. With the  -d option, clients must be started in a different
order:

i) iCserver -d   # always first anyway.

ii) one control  application,  which causes  iCserver to autovivify all  I/O's  (which are all
missing their complementary senders and receivers at this stage) as an iCbox -d with
appropriate ranges.

Iii) any manually started I/O's with real I/O or virtual I/O. Care must be taken to ensure
that  all  missing inputs for  the app are present,  since no further  missing I/O's  are
autovivified. Missing outputs are optional.

-A <cmd> - automatic startup with <cmd>. Usually <cmd> is iCbox with extra options e.g.
-A iCbox -C19. Startup and calling order is the same as for the -a option unless the -d
option is also used, in which case the -d option applies.

Note: with the -a -d and -A option care is taken to only autovivify the first member of an
equivalence list, which is the sender of that list if it is an output or will become the sender if it
is an input.

c) -g       - automatically start iClive xxx.ic when SCxxx registers.

-G <dbg> - automatically start  <dbg> xxx.ic when SCxxx registers.  Usually  <dbg> is
iClive with options e.g. -G iClive -t

d) -r option - reset registered receivers when sender disconnects i.e. reset outputs of an app
when it shuts down (default no change)

e) -k option -  if a sender registers with the same name as one already registered, kill the
previously  registered sender,  rather  than  reporting  an  error.  This  allows  a  recompiled
version of an iC application to be started, while an old version is still running - the old one
will quietly be killed. This should not be done in a production system.

Note:  when  a  control  application  exits  (disconnects  from  iCserver)  the  I/O's  are  not
disconnected. They can be re-used by a restarted similar control application. If the restarted
control application uses different I/O's a new iCbox is autovivified for any extra I/Os. This
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situation could be confusing and it would be better to start again by stopping iCserver. When
iCserver exits, all connected clients are disconnected and closed.

f) -R  <aux_app>[  <aux_app_argument>  ...] #  must  be  last  arguments.  Start  a
Bernstein chain of iC application which are each initialised and then started in parallel - in
this case with iCserver.

Example 3:

iCserver -R iCbox X0-X3 X10 -R sort

g) client  calls  (deprecated)  -  a  list  of  calls  with  their  parameters  allow  iCserver to  start  a
number of clients as separate processes like a shell.   These are usually all  the control
application(s) and I/O client(s)  to make up a complete control system. By providing this
functionality in iCserver, all the information for starting a control system is grouped in one
place.

Client  calls  consist  of  a  program path  optionally  followed by  a  space  separated  list  of
parameters.  Calls with parameters must be quoted on the command line and the optional
INI file to make them a single parameter for iCserver.

Example 4:

iCserver 'iCbox -n sorter-IO IX0 QX0 QX1' sorter

This starts iCserver and two clients - iCbox and the control application 'sorter'. Since correct
initialisation of the client processes started in parallel is not well controlled leading to bad
Aut  o  vivication, Bernstein chaining with the   -R   option is a better choice  .

h) -f <option_file> -  execute  a  file  with  iCserver options  at  startup.  For  very  large
equivalence tables a file defining equivalences and possibly other  iCserver switches and
options can be used.

iCserver -f <option file>

Format of the option file:

<equivalence line>
<equivalence line>
…
<other options>

i) Example of an option file (same as Example 1, 2 and 4 above with extra options):

QX7-0 = IX7-1 QX7-1 = IX7-0 # equivalences joining 2 instances
IX8 = IX8-0 = IX8-1          # input equivalences
IX9 = IX9-0 = IX9-1
'iCbox -n sorter-IO IX0 QX0 QX1' # quoted client call
sorter                       # plain client call
-ak                          # extra switches for iCserver

Individual equivalences and client calls must be written without spaces in the command line
unless client calls are quoted. In the INI file white spaces before and after the = may be
used in equivalences

Comments in the option file are started with #

A detailed description of command line options are available with ‘iCserver -h’ or in the iCserver man
page, best displayed by:

iCman iCserver

The iCserver man page also includes the full specification of registration and data messages between
iCserver and its clients, which may help understanding the iC network and how it should be configured.

9.2  iCbox
This is a graphical Tk-widget to provide virtual digital and analog I/O for testing iC apps, when no real
input/output is available.

The iCbox widget contains one or more frames - each frame containing one digital or analog input or
output widget. These are arranged in rows and columns to mimic the look of a physical I/O rack.

• Digital I/O widgets consist of a row of 8 vertical checkbuttons labelled .0 to .7 - representing
the 8 bits of one digital I/O byte IXn or QXn. The address IXn or QXn labels the frame. Input



62

checkbuttons  are  green  whereas  output  checkbuttons  are  red  when  on.  Only  input
checkbuttons are active when the mouse is over a button and can be toggled on or off with
mouse button-1.

• Analog I/O widgets consist of a slider or scale widget allowing the display or selection of a
range of numbers. Default is a range from 0 to 100. This range can be changed on creation of
the widget (,start, finish option). Analog I/O widgets may be generated to deal with single byte
values, 2 byte or word values and 4 byte or long values. These are labelled IBn, IWn, ILn and
QBn, QWn, QLn for inputs and outputs respectively. Input sliders have a green background
and their central button may be moved with the mouse to change the value transmitted from
the widget. To obtain greater precision, the coloured area above and below the button may be
clicked with mouse button-1, to decrement or increment the value in unit steps. Output sliders
have a red background and only display the value received by the widget.

 ID parameters

•  X0 X2    generates inputs and outputs IX0 QX0 IX2 QX2 in that order

•  B0-B2    generates inputs and outputs IB0 QB0 IB1 QB1 IB2 QB2

•  IW3 IW7  generates only inputs IW3 and IW7

• QL4-QL7  generates only outputs QL4 QL5 QL6 and QL7

Combined  input/output  or  input-only  parameters  may  optionally  be  initialised  by  following  the  ID
parameter with =<number>. <number> may be decimal, octal, hexadecimal or binary as follows:

• X10=15 X11=017 IX12=0xf IX13=0b1111    all equal decimal 15

• IW10=-70 initialises IW10 with -70 (IW10=-70,-100,0 to be useful).  Only decimal initialisers
may be preceded by a minus sign

An optional initialiser may be placed after the second parameter of a range.  Every input in the range
will be initialised to the same value.  Outputs cannot be initialised.

• IW20-IW27=50  initialises IW20 IW21 .. IW27 with 50

For analog inputs this means that the output and the slider are set to the value of 50, which happens to
be in the middle.

• X20-X27=0b1011 initialises IX20 IX21 .. IX27 with 0b1011

For digital inputs X20 this means that IX20.0 IX20.1 and IX20.3 are set - all other bits remain reset.
Similarly for IX21 to IX27.

All  analog parameters  or  parameter  ranges  may  optionally  be  followed by  two  or  three  comma-
separated numbers naming the start, finish and optionally the resolution of the numbers displayed by
the analog scale. Default ',0,100' which is equivalent to ',0,100,1'.  A negative resolution reverses the
direction of the slider. (0 is not allowed)

All digital parameters or parameter ranges may optionally be followed by one, two or three comma-
separated numbers. Two consecutive commas or any numbers missing at the end will be filled with a
default.

1. is a bit-mask defining, whether a particular bit .0 to .7 is defined and should be implemented.
The easiest  way to  declare  the bit  mask  is  as  a  binary  number,  eg:  ',0b10001111'.  This
declares that bits .0, .1, .2, .3 and .7 are defined in the application and should be implemented.
The bits which are not defined are left blank. Default 0b11111111 or 255 - all bits are defined.

2. is a delay value in milliseconds. Any value 50 and above is used to reset the button internally
after that many milliseconds, which makes it a push-button that only needs to be clicked once
with the left mouse button.  Non-zero values less than 50 (including negative values) are set to
50 ms. Default 0 - normal on/off button.

3. is a bit mask defining, whether a particular bit .0 to .7 is a push-button or is a normal on/off
button. This is only useful if a delay value has been specified. This optional mask lets you
select which bits in one group are to be push-buttons. Default 0x11111111 - all push-buttons.

ID-parameter, range, initialiser and number-range must be written without spaces in the command line
unless they are quoted. In the optional INI file which can be read with the -f option, white space can
be placed between parameter, range, initialiser and number-range.  They must only be all in one line.
In an INI file any text following '#' is ignored and treated as a comment.

A separate frame is generated for each input and output ID; two frames for an ID not specifying I or Q.
Each frame is labelled with the ID followed by the optional instance; eg IX0 or IX0-1. The number of
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columns is limited to 12, to prevent the whole widget becoming too wide.  On the other  hand the
number of rows is also limited to 3 (has precedence). The number of frames in a row (columns) may
be specified with the -c option (absolute maximum with -C).  If the number of I/O frames exceeds an
absolute maximum of 18 columns and 3 rows, more rows are generated, which can be accessed with
a scroll-bar.

Digital frames have a vertical row of 8 Checkbuttons labelled .0 .1 ... .7 for IX0.0 IX0.1 ... IX0.7; Input
Checkbuttons are green when set and may be pressed on and off or on only if they are a push-button;
analog input IB3 set at 2Output Checkbuttons are red when set and display an external value only -
they cannot be pressed.

Analog frames have a vertical slider labelled 0 to 100 by default.  Analog inputs have a green slider -
analog outputs a red slider. Only input sliders can be moved to change an input value.

An iCbox generated with the -d option will make input frames which behave like outputs (except for
the labels). This is useful for monitoring real external inputs (and outputs).

An  iCbox generated with the  -r option will reverse the functionality of inputs and outputs. Frames
whose ID starts with a Q can be modified whereas frames whose ID starts with I will only monitor. An
iCbox -r mimics an iC application during early development.

An optional frame with a Hold button is generated with the -H option showing [II] (press to hold).
After this button is pressed it shows [>].  While [>] is showing, any input changes are queued and
not transmitted until the  [>] button is pressed again, now showing  [II] again.  This is useful for
testing iC programs in a situation when several inputs must arrive simultaneously. Analog input scales
and Push-buttons with an internal reset delay are also held, the latter sending their on and delayed off
state  when  the  [>] button  is  pressed.   Two  further  buttons  showing  [all] and  [~all] are
generated. The former sets all inputs when pressed and clears all inputs when pressed again. The
latter inverts all inputs when pressed and restores them when pressed again.

iCbox with digital input IX0.0 set HI, analog input IB3 set at 2
 and digital outputs QX0.2 and QX8.1 showing HI
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9.3  iClift
The program iClift simulates the workings of one or more
lifts or elevators for any number of floors in a building. iClift
is  a  GUI  program  based  on  the Tk:canvas  widget  of
Perl/Tk.  It  has drawings  of  a  moving  cage  and  moving
doors and buttons and indicators in all the right places. The
interface to an iC controller is via mouse actions  leading to
TCP/IP messages  in a manner similar to iCbox, which is
also a Tk widget. The illustration shows the ground floor
doors opening.

9.4  I/O Drivers for the Raspberry Pi

9.4.1  icpiFace or iCpiGPIO
iCpiFace is an I/O client for  iCserver in the  immediate C
environment of a Raspberry  Pi handling real 8 bit  inputs
and 8 bit outputs for each PiFace controllers attached to a
Raspberry Pi or from a number of direct GPIO pins on the
Raspberry Pi or both.  It also handles 8 bits of push button
input and control of an LCD Text panel for a PiFaceCAD.

All  GPIO  pins  on  a  Raspberry  Pi  A,  B  or  B+  may  be
selected as either an input bit or output bit independent of
whether PiFaces are present or not, except GPIO 7-11 and
GPIO 25 if PiFaces are also processed.  All GPIO inputs
are handled by interrupts.

If no PiFace controllers are found or if the program is called
with  -G or with the alternate name  iCpiGPIO, only GPIO
pins will be handled.

A  maximum  of  8  PiFace  controllers  can  be  handled
altogether - either one plugged directly into a Raspberry Pi -
or 4 on one PiRack - 7 on 2 PiRacks - 8 require 3 PiRacks.

One of the PiFaces (at address 4) can be a PiFaceCAD,
which has 8 push button inputs and a 2 line x 16 character
LCD  display.  The  PiFaceCAD  fits  neatly  as  the  last
controller on a PiRack or can be mounted on its own on the
Raspberry Pi.

iCpiFace can  be  used  with  PiFace  Relay+  and  PiFace
Relay  Extra.  The  labelling  of  the  extra  GPIOB  input  or
output bits for a Relay+ and a Relay Extra is confusing:

• x0 x1 x2 x3 on a PiFace Relay+ are bit 7 6 5 4 of GPIOB.

• y0 y1 y2 y3 on a PiFace Relay Extra are bit 3 2 1 0 of GPIOB.

These I/Os have no screw connectors like on a PiFace card. They can be wire-wrapped.

Similar I/O operations for both PiFaces and Raspberry Pi GPIOs can be obtained by linking the driver
directly to an iC app, in which case these I/O operations are not handled by iCserver.

                     CAVEAT

 Only one instance of iCpiFace or an app with IEC parameters may be run and all GPIOs, PiFaces and
an optional PiFaceCAD must be controlled by this one instance. If two instances were running, the
common interrupts would clash. Also no other program controlling GPIOs and PiFaces like  PiFace
Digital Emulator may be run at the same time as this application.  An exception is  iCpiPWM which
controls GPIOs by DMA and not by interrupts.  Another exception is iCtherm which controls GPIO 4 by
the 1Wire interface.  Care is taken that any GPIOs or PiFaces used in one app, iCpiFace, iCpiPWM or
even iCtherm do not clash with another app (using file ~/.iC/gpios.used).

9.4.2  iCpiPWM
iCpiPWM is an I/O client for iCserver in the immediate C environment of a Raspberry Pi handling real
analog output to one or more direct GPIO pins on the Raspberry Pi either as servo pulses in the range
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500 to 2500 microseconds at 20 ms intervals (50 Hz) or as PWM pulses at different frequencies with a
duty cycle in the range 0 to 100.

All GPIO pins on a Raspberry Pi A, B, B+ or 2B may be selected for analog output as long as they are
not used by iCpiFace or an iC app linked with PiFace or direct GPIO I/O capabilities.

Note: GPIO 7, 8, 9, 10, 11 and 25 are already used if actual PiFaces are also processed.

iCpiPWM -f forces use of GPIO's by this program. In this case  iCpiFace or a direct output  iC app
must be started afterwards. These other apps also check that the GPIO's they use are free.

iCpiPWM also handles real analog input from an MCP3008 ADC as used on a "Wombat" board or on
any hardware using the MCP3008 ADC controller connected to a Raspberry Pi.

9.4.3  iCtherm
iCtherm  can be used as an I/O client for iCserver in the immediate C environment of a Raspberry Pi
or as a stand-alone program supplying temperature values.

The iCtherm program measures temperature using one or more DS18B20 1-Wire digital thermometers
normally connected to GPIO4 of a Raspberry Pi.

The DS18B20 digital thermometer provides 9-bit to 12-bit Centigrade temperature measurements and
has an alarm function with non-volatile user-programmable upper and lower trigger points.  It has an
operating temperature range of -55°C to +125°C and is accurate to ±0.5°C over the range of -10°C to
+85°C.

Each  DS18B20 has a unique 64-bit serial code, which allows multiple  DS18B20s to function on the
same 1-Wire bus. Thus it is simple to use one processor to control many DS18B20s distributed over a
large  area.  Applications  that  can  benefit  from this  feature  include  HVAC environmental  controls,
temperature monitoring systems inside buildings, equipment, or machinery, and process monitoring
and control systems.

iCtherm uses 12-bits for maximum resolution and currently does not use the alarm function.  The
program has been designed to be an I/O client for an iC network supplying temperature values either in
degrees Centigrade or Fahrenheit in 1/10 degree steps. Each thermometer supplies a 16 bit word
value in the range -550 to +1250 on an IEC-1131 input IWn associated with a thermometer in the call.
These values are to be interpreted in the range of -55.0°C to +125.0°C.  (Fahrenheit values have a
range of -670 to +2570 for the same temperatures -67.0°F to +257.0°F).

Temperature readings are made at regular intervals - the default is 60 seconds. This can be altered in
1 second steps with the -r option.  These readings, which are in 1/16th°C  for 12 bit resolution are
smoothed  with  a  moving  average  of  6.25.  This  gives  values  in  0.01°C smoothed over  approx  5
minutes. For output this value is rounded to the nearest 0.1°C (or converted to Fahrenheit and rounded
to the nearest  0.1°F).   Output  to  the  iC network (or  to printed output)  only  occurs  when a value
changes by at least 0.1° with a hysteresis of ±0.01°. In practice this means output only occurs every 15
minutes or so - often longer if the temperature is stable.

IEC parameters for the iC network

•  IEC     IW0 IW1 IW2 ...  (default IEC is IW0 etc unless -w -o -d) A range of IEC's can be
specified -  eg IW0-IW3 alternatively

• IEC:tid individual IECs may be followed by the thermometer identification or part of it;  eg
IW0:28-0000062e8239  or  IW0:239  (default:  thermometers  are  connected  in  ascending
numerical order).

If no IEC parameters are given, the program acts as a stand-alone temperature recorder. Temperature
values can also be printed directly to standard output or to a file with the -w or -o options. With the -d
option each temperature output also has a date and time stamp.  With the -I option each thermometer
output can be given an individual id string eg 'inside' or 'outside'. The identification strings of connected
thermometers are listed with the -l option.

ELECTRICAL CONNECTIONS

DS18B20 1-Wire digital thermometers are connected to the Raspberry PI by connecting the red wire
(Vcc) to 3.3 volts, the green wire (Gnd) to 0 volts and the yellow wire (DQ0 to GPIO4 (pin 7). A 4.7
kohm pull up resistor must also be connected from GPIO4 to Vcc. The program was tested with 10
DS18B20 thermometers. All 3 wires are each connected in parallel.
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9.5  Bernstein Chaining
If several different  iC applications or different instances of the same application as well as different
drivers are to be started together, they must all run in parallel as separate processes and in parallel
with iCserver and optionally with iClive).  This is difficult to achieve with shell commands. 

THESE SHELL COMMANDS DO NOT WORK CORRECTLY!

foo; bar # does not start bar until foo stops
foo &; bar # is a shell syntax error
foo & # this starts processes in parallel
bar # but initialisation sequences clash because

# initialisation also starts in parallel

None of these is what we want., because each iC application as well as each I/O driver consists of two
parts:

1. an initialisation sequence, which includes registration with iCserver, which must be completed
for each app before the next app is started.

2. a series of interrupt driven actions, which are independent for each app and must be run in
parallel so that all events triggered by interrupts are handled correctly. 

To achieve the desired result, Bernstein chaining has been implemented with the -R option for every
iC app, for all iC drivers, for iClive and for iCserver. Each  app is started as a new process and initially
executes its complete initialisation code, including registration with  iCserver till  just before the app
starts waiting for its first interrupt to handle iC events. At this point, if the app has a -R option, the first
argument of the option and all further arguments (including later  -R options) are executed as a new
process with a fork call. The parent will now wait for  iC events in parallel with the child of the fork,
which first  goes through its  initialisation and if  there is  another  -R option the whole sequence is
repeated.

The final -R option could even call a non iC program, which would execute in parallel with the rest of
the Bernstein chain.

BERNSTEIN CHAIN EXAMPLE THAT WORKS CORRECTLY FOR THE ABOVE CASE

foo -R bar # starts foo and bar in parallel
# with well sequenced initialisation

With Bernstein Chaining each app e.g. ‘foo’ is fully initialised and registered with   iCserver   before the  
-R   option starts the next app ‘bar’ and forks it to run in parallel with the previous app  .

Here is a longer example:

bar -l -R bar -i1 -R bar -i2 -R bar -i3 # starts bar -l then:
iCserver -z -ak # unless already on
iClive -z bar.ic # triggered by bar -l
bar -z -i1 -R bar -i2 -R bar -i3 # 2nd app in chain
bar -z -i2 -R bar -i3 # 3rd app in chain
bar -z -i3 # 4th app in chain

# by auto-vivification iCserver forks:
iCbox -z X0 B1 X2 X0-1 B1-1 X2-1 X0-2 B1-2 X2-2 X0-3 B1-3 X2-3

The above example shows that iCserver is started automatically (if not already running) in a Bernstein
chain fashion. This means that the first event of that app will find a running iCserver to communicate
with;  (actually  iCserver is  forked slightly  earlier  before the app tries to connect  with  iCserver and
register). 

Only the first app in the chain (which is ‘bar’ in this case) has keyboard input. It can be stopped by
typing 'q'.  This in turn stops iCserver, which stops all other apps in the chain. All chained apps are
started with the -z option, which blocks keyboard input. Another way to stop the whole chain is to click
the  button of any iCbox, which stops iCserver, which in turn stops all iC apps registered with it.

Bernstein chaining is important for driver calls with real I/O arguments. For the Raspberry Pi these are
calls to iCpiFace, iCpiPWM and iCtherm, which all support Bernstein chaining with the -R option. The
virtual  I/O  driver  iCbox also  supports  the  -R option,  which  allows  it  to  be  called  anywhere  in  a
Bernstein chain with options not provided by an autovivified iCbox, which is the most common way to
start it.
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10    A Real World Example

Controlling lifts or elevators in a building is a typical control problem, which used to be done with relays
until the 90’s. Since that time PLC’s are probably used. Immediate C is a very suitable language for the
job. The specifications are clear,  since most people are very familiar with using lifts.  But the finer
details are tricky and require some thought.

The first implementation of an  iC Lift Controller I developed –  lifts.ic - was very simple and did not
implement queuing of multiple floor requests, which is an important aspect of any realistic controller of
actual lifts. Another problem with this simple lift controller was, that it needed a physical lift or at least a
virtual lift to react to the control signals from the iC control program and send feedback to the control
program when initiated actions are completed, like the movement of the cage or closing of a door.
Since I did not have anything like a physical lift to work with when I started developing the lift program, I
first had to program a virtual lift. This is the GUI program iClift.

At  a  Mini  Maker  Faire  at the  Power  House
Museum in Sydney I met Keith Burston, who
had built a realistic model of a lift system from
Meccano parts:  https://www.nzmeccano.com/
image-38174&string=lift. This lift  services four
floors with a moving cage  and counterweight
driven by an electric motor and motor driven
inside doors, which mechanically engage with
the outside doors at each floor to open both
together. It has outside floor buttons and a box
with  inside  floor  buttons  as  well  as  floor
indicators.  Keith  Burston’s  original  controller
was made from miniature relays and a rotating
sequencer. 

Keith  was  impressed  by  the  iC system and
built  an interface  to  his  lift,  using  the same
MCP23S17 16 Bit I/O Expander IC chip used
in PiFace interface cards for the Raspberry Pi.
This  allowed  me  to  write  a  very  much
expanded lift controller program kbLift.ic for a
Raspberry  Pi,  which  interacts with  Keith
Burston’s  lift  model  using  iCpiFace as  a
driver.  kbLift.ic does proper queuing of  floor
requests from both outside and inside the lift
and  follows  a  regular  sequence  of  up  and
down movements to the nearest  floor  in the
current direction, which is not necessarily the
sequence in which floor request buttons were
pressed. That Raspberry Pi based  iC control
system works very reliably and was displayed
at the next Mini Maker Faire with the Meccano
model lift.

Since I do not have access to the Meccano
model  at  home,  I  was  keen  to  run  the
expanded lift controller kbLift.ic with my virtual
lift system iClift. One reason for doing this was to be able to demonstrate the program at any time. A
second and more important reason was, that I wanted to expand kbLift.ic to work with other than four
floors, and to be able to control more than one lift. I needed iClift for that, which can simulate any
number of floors and any number of lifts in one canvas. There was a serious problem to actually doing
this. The interface between iClift and lifts.ic is quite different to the interface between the Meccano lift
and kbLift.ic. One way to fix that is to re-write iClift to match the Meccano lift interface. I had written
iClift some years earlier. It is quite an involved program and proved very tedious to modify. Also that
type of GUI programming was not part of my main research effort – that was developing iC and writing
example programs in  the  iC language. Therefore rather  than modifying  iClift I  wrote  a bridge  iC
program jwLift.ic, which adapts the interface from iClift to that of kbLift.ic, which supports the interface
to the Meccano lift. At the same time jwLift.ic is an example of inputs and outputs of one iC program
being driven from the outputs and inputs of another iC program. Another useful program for testing is
simLift.ic which simulates the physics of the lift and interfaces directly with kbLift.ic.

https://www.nzmeccano.com/image-38174&string=lift
https://www.nzmeccano.com/image-38174&string=lift
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10.1  The Meccano Lift control program kbLift.ic
All inputs from the Meccano Lift come from mechanical limit switches and push buttons, which have 
contact bounce going on and off. The program defines one Function block to take care of this:

/********************************************************************
 * Function block to de-bounce switch contact inputs
 *     output will rise with first rising input
 *     output will fall after input has been low for 50 to 100 ms
 *******************************************************************/

imm bit   deBounce(bit contact)
{
    extern imm timer t50;
    extern imm bit Deoi;
    this = ~D(~contact, t50, 2) & Deoi; // mask initial rise at delayed EOI
}

/********************************************************************
 * Processor inputs
 *******************************************************************/

imm timer t50  = TIMER(T100ms, ~T100ms); // 50 ms timer
imm bit   Deoi = D(EOI, t50, 3); // 100 ms delay at end of initialisation
imm bit   eoi  = EOI & ~Deoi; // pulse at end of initialisation

The following iC expressions give meaningful names to IEC names supplied by the interface hardware:

/********************************************************************
 * INPUTS - Port B
 *******************************************************************/

// Device Address 0
imm bit LIFT_AT2 = deBounce(IX0.0); // Lift aligned with level 2
imm bit CALL_UP2 = deBounce(IX0.1); // Request up from level 2
imm bit CALL_DOWN2 = deBounce(IX0.2); // Request down from level 2
imm bit LIFT_AT1 = deBounce(IX0.3); // Lift aligned with level 1
imm bit CALL_UP1 = deBounce(IX0.4); // Request up from level 1

// Device Address 1 // not used for inputs

// Device Address 2
imm bit I_REQUEST_OPEN = deBounce(IX2.0); // Open door button inside lift
imm bit I_REQUEST4 = deBounce(IX2.1); // Lift to level 4 request inside lift
imm bit I_REQUEST3 = deBounce(IX2.2); // Lift to level 3 request inside lift
imm bit I_REQUEST2 = deBounce(IX2.3); // Lift to level 2 request inside lift
imm bit I_REQUEST1 = deBounce(IX2.4); // Lift to level 1 request inside lift
imm bit CALL_DOWN3 = deBounce(IX2.5); // Request down from level 3
imm bit CALL_UP3 = deBounce(IX2.6); // Request up from level 3
imm bit LIFT_AT3 = deBounce(IX2.7); // Lift aligned with level 3

// Device Address 3
imm bit DOOR_OPEN = deBounce(IX3.0); // Lift door in open position
imm bit LIFT_AT4 = deBounce(IX3.1); // Lift aligned with level 4
imm bit CALL_DOWN4 = deBounce(IX3.2); // Request down from level 4
imm bit DOOR_SHUT = deBounce(IX3.3); // Lift doors in closed position

Declarations of immediate variables, which are used before they have been assigned:

imm bit goingUp    , closeDoor  , sameFloor  , atTargetShut;
imm bit forwardUp2 , forwardUp3 , forwardDn3 , forwardDn2  ;
imm bit reqFloorUp2, reqFloorUp3, reqFloorDn3, reqFloorDn2 ;
imm bit StargetUp2 , Starget2   , StargetUp3 , StargetDn3  , Starget3 , StargetDn2  ;

The following is the control logic. The comments explain what is happening:

/********************************************************************
 *  minimum delay to keep door open * 0.1 second
 *******************************************************************/
imm int doorDelay = IB3 * 2 ? : 50 * 2; // default 5 seconds
imm bit doorOpenMin = D(DOOR_OPEN & ~sameFloor, t50, doorDelay); // doorDelay =
imm bit goingDn = ~goingUp; // t50 =

/********************************************************************
 *  Gates used for blocking the setting of reqFloorUp/Dn2/3
 *******************************************************************/
imm bit goingUp2 = LIFT_AT2 & goingUp;
imm bit goingUp3 = LIFT_AT3 & goingUp;
imm bit goingDn3 = LIFT_AT3 & goingDn;
imm bit goingDn2 = LIFT_AT2 & goingDn;
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/********************************************************************
 *  Gates used for resetting reqFloorUp/Dn2/3, which may only occur on
 *  the leading edges of LIFT_AT2/3 and never on the leading edges of
 *  goingUp/Dn, which change when switching direction while still at
 *  a floor different to the next target floor.
 *******************************************************************/
imm bit Rlift_at1 = RISE(LIFT_AT1);
imm bit Rlift_at2 = RISE(LIFT_AT2);
imm bit Rlift_at3 = RISE(LIFT_AT3);
imm bit Rlift_at4 = RISE(LIFT_AT4);

imm bit RgoingUp2 = Rlift_at2 & goingUp;
imm bit RgoingUp3 = Rlift_at3 & goingUp;
imm bit RgoingDn3 = Rlift_at3 & goingDn;
imm bit RgoingDn2 = Rlift_at2 & goingDn;

imm bit resFloor2 = LIFT_AT1 | LIFT_AT3;
imm bit resFloor3 = LIFT_AT2 | LIFT_AT4;

/********************************************************************
 *  Current cage position is set on the leading edges of LIFT_AT1 to
 *  LIFT_AT4 either going up or coming down. This means that when one
 *  of those switches is already on, and that position has been noted
 *  it is too late to select that position as a new target destination.
 *  This avoids trying to stop the lift towards the end of the time
 *  one of those switches is activated - the switch could jiggle as the
 *  door opens causing problems. We stop hard on the leading edge of
 *  one of the LIFT_AT_x switches or not at all.
 *******************************************************************/
imm bit atFloor1 = SR(LIFT_AT1, LIFT_AT2);
imm bit atFloorUp2 = SR(RgoingUp2, resFloor2);
imm bit atFloorUp3 = SR(RgoingUp3, resFloor3);
imm bit atFloor4 = SR(LIFT_AT4, LIFT_AT3);
imm bit atFloorDn3 = SR(RgoingDn3, resFloor3);
imm bit atFloorDn2 = SR(RgoingDn2, resFloor2);

imm bit atFloor2 = atFloorUp2 | atFloorDn2;
imm bit atFloor3 = atFloorUp3 | atFloorDn3;

imm int cagePosition = atFloor1 ? 1 : atFloor2 ? 2 : atFloor3 ? 3 : atFloor4 ? 4 : 0;
imm bit at_a_floor = D(LIFT_AT1 | LIFT_AT2 | LIFT_AT3 | LIFT_AT4);// sync with atFloor1 - 4

/********************************************************************
 *  If doorOpenMin has expired and next target is on the same floor simply
 *      reset that next target because request has already been honoured.
 *  Also block changing direction with 'newRequest' if next target is on
 *      the same floor.
 *******************************************************************/
imm bit sameUp2 = forwardUp2 & atFloor2 & reqFloorUp2 & goingDn;
imm bit sameUp3 = forwardUp3 & atFloor3 & reqFloorUp3 & goingDn;
imm bit sameDn3 = forwardDn3 & atFloor3 & reqFloorDn3 & goingUp;
imm bit sameDn2 = forwardDn2 & atFloor2 & reqFloorDn2 & goingUp;

imm bit nextUp2 = doorOpenMin & sameUp2;
imm bit nextUp3 = doorOpenMin & sameUp3;
imm bit nextDn3 = doorOpenMin & sameDn3;
imm bit nextDn2 = doorOpenMin & sameDn2;

/********************************************************************
 *  Set target requests
 *      Floor 1 and 4 wall requests and all requests from in the cage
 *      are up/down independent, which means lift will stop next time
 *      it comes by the target floor whether going up or down.
 *      Floor 2 and 3 wall requests are split into up and down requests,
 *      which means lift will only stop if going in the right direction.
 *  Block all requests if lift is stopped at the requested target floor.
 *******************************************************************/
imm bit reqW1 = SR( CALL_UP1                & ~LIFT_AT1,
            LIFT_AT1                           );
imm bit reqI1 = SR( I_REQUEST1              & ~LIFT_AT1,
            LIFT_AT1                           );
imm bit reqUp2 = SR( CALL_UP2                & ~goingUp2,
             RgoingUp2  & StargetUp2 |  nextUp2 );
imm bit req2 = SR( I_REQUEST2              & ~LIFT_AT2,
             LIFT_AT2   & Starget2              );
imm bit reqUp3 = SR( CALL_UP3                & ~goingUp3,
             RgoingUp3  & StargetUp3 |  nextUp3 );
imm bit reqW4 = SR( CALL_DOWN4              & ~LIFT_AT4,
             LIFT_AT4                           );
imm bit reqI4 = SR((I_REQUEST4 | eoi)       & ~LIFT_AT4,
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             LIFT_AT4                           );
imm bit reqDn3 = SR( CALL_DOWN3              & ~goingDn3,
             RgoingDn3  & StargetDn3 |  nextDn3 );
imm bit req3 = SR( I_REQUEST3              & ~LIFT_AT3,
             LIFT_AT3   & Starget3              );
imm bit reqDn2 = SR( CALL_DOWN2              & ~goingDn2,
             RgoingDn2  & StargetDn2 |  nextDn2 );
imm bit req1 = reqW1 | reqI1;
imm bit req4 = reqW4 | reqI4;

/********************************************************************
 *  Hold target request made for current floor until cage has moved
 *  to the next floor. Pass on all other requests delayed by one iClock.
 *******************************************************************/
imm bit reqFloor1 = SR( req1   & at_a_floor, ~req1  );
imm bit reqFloorUp2 = SR( reqUp2 & at_a_floor, ~reqUp2);
imm bit reqFloor2 = SR( req2   & at_a_floor, ~req2  );
imm bit reqFloorUp3 = SR( reqUp3 & at_a_floor, ~reqUp3);
imm bit reqFloor4 = SR( req4   & at_a_floor, ~req4  );
imm bit reqFloorDn3 = SR( reqDn3 & at_a_floor, ~reqDn3);
imm bit reqFloor3 = SR( req3   & at_a_floor, ~req3  );
imm bit reqFloorDn2 = SR( reqDn2 & at_a_floor, ~reqDn2);

imm bit newTarget = reqFloor1                & ~LIFT_AT1 |
     (reqFloorUp2 | reqFloor2 | reqFloorDn2) & ~LIFT_AT2 |
     (reqFloorUp3 | reqFloor3 | reqFloorDn3) & ~LIFT_AT3 |
    reqFloor4                & ~LIFT_AT4 ;

/********************************************************************
 *  Targets can be changed with a new request right up to the point
 *  where the door is opened with 'atTargetShut'. At that point the
 *  door continues to open at the current target which is not changed.
 *
 *  The new target request is blocked by '~atTargetShut', but is
 *  guaranteed to be honoured because the door will shut again, at
 *  which point the target is changed with 'doorShut'.
 *
 *  Previously the target was changed which led to the situation where
 *  the door and the cage move together - locking up the system.
 *
 *  Delay all new wall requests and internal newRequest triggered by
 *  reqFloor2 and reqFloor3 by one iClock to be in line with forwardX
 *******************************************************************/

imm bit doorShut = closeDoor & DOOR_SHUT;
imm bit newRequest = doorShut |
  (~at_a_floor | ~atTargetShut) &
  (
    ST(reqFloor1  , iClock) |
    ST(reqFloorUp2, iClock) |
    ST(reqFloor2  , iClock) |
    ST(reqFloorUp3, iClock) |
    ST(reqFloor4  , iClock) |
    ST(reqFloorDn3, iClock) |
    ST(reqFloor3  , iClock) |
    ST(reqFloorDn2, iClock)
  )                               ;

/********************************************************************
 *  Determine next target position
 *  Lift positions and target requests are in a circle as follows
 *  1 2|up2 3|up3 4 3|dn3 2|dn2 1
 *
 *  Target requests for floors 1 and 4 are the same from the single
 *  wall buttons on those floors or from inside the lift. Target
 *  requests for floors 2 and 3 from inside the lift will cause the
 *  lift to stop when comimg past those floors going up or down.
 *  Target requests for floors 2 and 3 from the up/down wall buttons
 *  will cause the lift to stop at those floors only when going in
 *  the right direction.
 *
 *  Starting at the current position the next target is the next
 *  requested floor on the right. As the lift is moving new requests
 *  may come in, in which case the lift will stop early, if the new
 *  request is between the then current position and the previous
 *  next target.
 *
 *  Since one atFloorX will always be hi, the forwardX ring will be
 *  broken at the current position if 'reqTarget' is hi (no latching).
 *  Nevertheless 'atFloorX' variables are ANDED with 'reqTarget' as well
 *  to prevent spurious multiple changes when there is no request, which
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 *  look like oscillations. There are up to 5 changes in intermediate
 *  variables if this is not done. When there is a request this does
 *  not happen, because the forward ring is broken at the request.
 *******************************************************************/
imm bit reqTarget = reqFloor1 | reqFloorUp2 | reqFloor2 | reqFloorUp3 |
  reqFloor4 | reqFloorDn3 | reqFloor3 | reqFloorDn2 ;

imm bit forward1 = reqTarget &
                        D(forwardDn2 & ~reqFloor2 & ~reqFloorDn2 & ~atFloor1   | atFloor1  );
imm bit forwardUp2 = reqTarget &
                        D(forward1   & ~reqFloor1                & ~atFloorUp2 | atFloorUp2);
imm bit forwardUp3 = reqTarget &
                        D(forwardUp2 & ~reqFloor2 & ~reqFloorUp2 & ~atFloorUp3 | atFloorUp3);
imm bit forward4 = reqTarget &
                        D(forwardUp3 & ~reqFloor3 & ~reqFloorUp3 & ~atFloor4   | atFloor4  );
imm bit forwardDn3 = reqTarget &
                        D(forward4   & ~reqFloor4                & ~atFloorDn3 | atFloorDn3);
imm bit forwardDn2 = reqTarget &
                        D(forwardDn3 & ~reqFloor3 & ~reqFloorDn3 & ~atFloorDn2 | atFloorDn2);

imm bit target1 = forward1   &   ~atFloor1 & reqFloor1                          
;
imm bit targetUp2 = forwardUp2 & ((~atFloor2 & reqFloor2) | (~atFloorUp2 & reqFloorUp2));
imm bit targetUp3 = forwardUp3 & ((~atFloor3 & reqFloor3) | (~atFloorUp3 & reqFloorUp3));
imm bit target4 = forward4   &   ~atFloor4 & reqFloor4                          
;
imm bit targetDn3 = forwardDn3 & ((~atFloor3 & reqFloor3) | (~atFloorDn3 & reqFloorDn3));
imm bit targetDn2 = forwardDn2 & ((~atFloor2 & reqFloor2) | (~atFloorDn2 & reqFloorDn2));

imm bit target2 = targetUp2 | targetDn2;
imm bit target3 = targetUp3 | targetDn3;

imm int targetPosition = SH(newRequest & target1       ? 1 : // targetPosition =
     newRequest & target2       ? 2 :
     newRequest & target3       ? 3 :
     newRequest & target4 | eoi ? 4 : targetPosition);

/********************************************************************
 *  Turn on all approachX lights and goingUp/Dn lights when a target
 *  is being requested or when at at_a_floor and door has not timed out.
 *******************************************************************/
imm bit notWaiting = reqTarget | (at_a_floor & ~doorOpenMin);
imm bit FnotWaiting = FALL(notWaiting);

imm bit Starget1 = SR(newRequest &  target1                          ,
                           doorShut   & ~target1   | FnotWaiting          );
imm bit StargetUp2 = SR(newRequest &  targetUp2 | nextUp2              ,
                           doorShut   & ~targetUp2 | FnotWaiting | nextDn2);
imm bit Starget2 = SR(newRequest &  target2                          ,
                           doorShut   & ~target2   | FnotWaiting          );
imm bit StargetUp3 = SR(newRequest &  targetUp3 | nextUp3              ,
                           doorShut   & ~targetUp3 | FnotWaiting | nextDn3);
imm bit Starget4 = SR(newRequest &  target4                          ,
                           doorShut   & ~target4   | FnotWaiting          );
imm bit StargetDn3 = SR(newRequest &  targetDn3 | nextDn3              ,
                           doorShut   & ~targetDn3 | FnotWaiting | nextUp3);
imm bit Starget3 = SR(newRequest &  target3                          ,
                           doorShut   & ~target3   | FnotWaiting          );
imm bit StargetDn2 = SR(newRequest &  targetDn2 | nextDn2              ,
                           doorShut   & ~targetDn2 | FnotWaiting | nextUp2);

/********************************************************************
 *  The following gates control the GOING_UP and GOING_DOWN lights
 *  on the wall. A light comes on when the floor is the next target in
 *  the right direction. It stays on while the door opens until it
 *  times out or closes. During this time the light is on for 2 floors.
 *******************************************************************/
imm bit approach1 = target1                 | Starget1  ;
imm bit approachUp2 = targetUp2 & ~StargetDn2 | StargetUp2;
imm bit approachUp3 = targetUp3 & ~StargetDn3 | StargetUp3;
imm bit approach4 = target4                 | Starget4  ;
imm bit approachDn3 = targetDn3 & ~StargetUp3 | StargetDn3;
imm bit approachDn2 = targetDn2 & ~StargetUp2 | StargetDn2;

/********************************************************************
 *  Move cage up if target position is above cage position
 *  Move cage down if target position is below cage position
 *  Stop moving cage if target position equals cage position
 *      or door not shut or reached lower or upper limit (safety measure)
 *******************************************************************/
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imm bit cageUp = targetPosition >  cagePosition; // cagePosition   =
imm bit cageDn = targetPosition <  cagePosition; // targetPosition =
imm bit atTarget = targetPosition == cagePosition;

imm bit openDoor;
imm bit cageSTOP = ~DOOR_SHUT        | // hard stop when door not shut
                        cageDn & LIFT_AT1 | // hard stop at floor 1 going down

                        cageUp & LIFT_AT4 | // hard stop at floor 4 going up
                        openDoor; // hard stop when opening door

imm bit LiftMotor1 = D(~cageDn) | cageSTOP; // Lift cage up or hard stop for any 
reason
imm bit LiftMotor2 = D(~cageUp) | cageSTOP; // Lift cage down or hard stop for any 
reason

imm bit sameFloorUp = RISE(nextUp2 | nextUp3);
imm bit sameFloorDn = RISE(nextDn2 | nextDn3);
imm bit sameFloor = sameFloorUp  | sameFloorDn;

/********************************************************************
 *  goingUp/Dn value for controlling requests etc
 *******************************************************************/
imm bit goingUp = SR(Rlift_at1 | // up
                        sameFloorUp  |
                        newRequest & ~sameUp2 & ~sameUp3 & (targetUp2 | targetUp3 | target4 )
    ,
                        Rlift_at4   | // down
                        sameFloorDn |
                        newRequest & ~sameDn2 & ~sameDn3 & (target1   | targetDn2 | targetDn3)
    );

/********************************************************************
 *  True direction for controlling lights inside cage
 *******************************************************************/
imm bit Rgoing_up = Rlift_at1 | RISE(cageUp);
imm bit Rgoing_dn = Rlift_at4 | RISE(cageDn);

imm bit I_GOING_UP_LIGHT   = SR(Rgoing_up, Rgoing_dn | FnotWaiting);
imm bit I_GOING_DOWN_LIGHT = SR(Rgoing_dn, Rgoing_up | FnotWaiting);

/********************************************************************
 *  Open door
 *      if at a floor and at target (at which point cage will have stopped)
 *         and door is shut (atTargetShut)
 *      or I_REQUEST_OPEN button but only if door is not yet fully shut
 *         this will open the door again - go through door timeout and
 *         select next target again
 *  Stop opening door   DOOR_OPEN
 *  atTarget is delayed by 1 iClock from DOOR_SHUT - use D(DOOR_SHUT)
 *  Stop cage before starting to open door
 *******************************************************************/
imm bit atTargetShut = atTarget & D(DOOR_SHUT); // also used to block selecting new target

imm bit openDoor = SR(at_a_floor & (atTargetShut                 |
                           I_REQUEST_OPEN &  ~DOOR_SHUT & ~DOOR_OPEN), // open
                           DOOR_OPEN                                 ); // stop

imm bit RingBell = ST(openDoor | sameFloor, t50, 2); // <100ms active high pulse

/********************************************************************
 *  Close door
 *      if doorOpenMin (started by DOOR_OPEN) has expired and
 *          a new target is available
 *  Stop closing door
 *      DOOR_SHUT or I_REQUEST_OPEN
 *
 *******************************************************************/
imm bit closeDoor = SR(doorOpenMin & ~sameFloor & newTarget & ~I_REQUEST_OPEN,
                           DOOR_SHUT | I_REQUEST_OPEN);

imm bit doorSTOP = ~at_a_floor              | // hard stop when not at a floor
                         openDoor  & DOOR_OPEN  | // hard stop when openening and fully open
                         doorShut               ; // hard stop when closing and fully shut

imm bit DoorMotor3 = D(~closeDoor | doorSTOP); // open door or hard stop for any reason
imm bit DoorMotor4 = D(~openDoor  | doorSTOP); // close door or hard stop for any reason

/********************************************************************
 *  Multiplex inside lift floor indicators
 *******************************************************************/
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imm bit I_AT_LIGHT5 = atFloor3 | atFloor4; // multiplexed light inside lift floors 3 or 4
imm bit I_AT_LIGHT6 = atFloor2 | atFloor4; // multiplexed light inside lift floors 2 or 4

Outputs are aliases of variables in the logic. A second alias of Keith Burstons names in his 
documentation has been declared and set.

/********************************************************************
 * OUTPUTS - Port A
 *******************************************************************/

imm bit I_REQUEST_4_LIGHT, I_REQUEST_3_LIGHT, I_REQUEST_2_LIGHT, I_REQUEST_1_LIGHT;
imm bit GOING_DOWN4, CALL_DOWN_4_LIGHT, GOING_UP3, GOING_DOWN3;

// Device Address 0
QX0.0 = I_REQUEST_4_LIGHT = reqI4; // Level 4 requested from inside lift
QX0.1 = I_REQUEST_3_LIGHT = req3; // Level 3 requested from inside lift
QX0.2 = I_REQUEST_2_LIGHT = req2; // Level 2 requested from inside lift
QX0.3 = I_REQUEST_1_LIGHT = reqI1; // Level 1 requested from inside lift
QX0.4 = GOING_DOWN4 = approach4; // On level 4 indicating lift going down
QX0.5 = CALL_DOWN_4_LIGHT = reqW4; // Down requested on level 4
QX0.6 = GOING_UP3 = approachUp3; // On level 3 indicating lift going up
QX0.7 = GOING_DOWN3 = approachDn3; // On level 3 indicating lift going down

imm bit CALL_UP_3_LIGHT, CALL_DOWN_3_LIGHT, GOING_UP2, GOING_DOWN2;
imm bit CALL_UP_2_LIGHT, CALL_DOWN_2_LIGHT, GOING_UP1, CALL_UP_1_LIGHT;

// Device Address 1
QX1.0 = CALL_UP_3_LIGHT = reqUp3; // Up requested on level 3
QX1.1 = CALL_DOWN_3_LIGHT = reqDn3; // Down requested on level 3
QX1.2 = GOING_UP2 = approachUp2; // On level 2 indicating lift going up
QX1.3 = GOING_DOWN2 = approachDn2; // On level 2 indicating lift going down
QX1.4 = CALL_UP_2_LIGHT = reqUp2; // Up requested on level 2
QX1.5 = CALL_DOWN_2_LIGHT = reqDn2; // Down requested on level 2
QX1.6 = GOING_UP1 = approach1; // On level 1 indicating lift going up
QX1.7 = CALL_UP_1_LIGHT = reqW1; // Up requested on level 1

// Device Address 2
QX2.0 = I_GOING_DOWN_LIGHT; // Lift "going down" light inside lift
QX2.1 = I_GOING_UP_LIGHT; // Lift "going up" light inside lift

// Device Address 3
QX3.0 = RingBell; // <100ms active high pulse
QX3.1 = LiftMotor1; // 2 bits to control 3 motor states
QX3.2 = LiftMotor2;
QX3.3 = DoorMotor3; // 2 bits to control 3 motor states
QX3.4 = DoorMotor4;
QX3.5 = I_AT_LIGHT5; // 2 bits multiplexed to drive one of four lights
QX3.6 = I_AT_LIGHT6;

QX3.7 = eoi; // reset cage and door alarms in simLift.ic
QB3 = targetPosition - 1; // for jwLift.ic to control iClift

10.2  Transfer Logic jwLift.ic

Use the script jwLift.is to start this pair of iC apps with iClift and three monitoring iCboxes:

iCserver -f jwLift.is

kbLift must be started with a different instance number ( -0 ) to avoid clashes with iClift I/O’s. 

iClift jwLift kbLift-0

QX41                         IX1-0 

IX40                         QX0-0 

QX40                         IX0-0 

QX42                         IX2-0 

QX43                         IX3-0 

IX41                         QX1-0 

IX42                         QX2-0 

IX43                         QX3-0 

IB43                         QB3-0 

IB0 

IX0 to IX9 

QX0 to QX9 

Transfer 
Logic

Lift
Controller
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Appendix A    Type Definition Table
The following table defines function types and output types of Gate nodes used in the  iC run-time
system. The columns 'os' and 'fos' are useful when interpreting the compiler generated listings.

Define function type Functp* Functp Functp Functp Functp
type os -gt_ini ftypes yacc token i_lists [0] [1] [2] [3]

0 UDF . UDFA YYERRC. gate_i pass1 pass2 gate3 pass4
1 ARNC - ARITH AVARC gate_i pass1 pass2 gate3 pass4
2 ARNF + ARITH YYERRC. gate_i pass1 pass2 gate3 pass4
3 ARN + ARITH YYERRC. gate_i pass1 pass2 gate3 pass4
4 LOGC ' GATE LVARC gate_i pass1 pass2 gate3 pass4
5 XOR ^ MIN_GT GATE YYERRC. gate_i pass1 pass2 gate3 pass4
6 AND & GATE YYERRC. gate_i pass1 pass2 gate3 pass4
7 OR | GATE YYERRC. gate_i pass1 pass2 gate3 pass4
8 LATCH % GATE YYERRC. gate_i pass1 pass2 gate3 pass4
9 SH * MAX_GT D_SH YYERRC. ff_i pass1 pass2 i_ff3 pass4

10 FF # D_FF YYERRC. ff_i pass1 pass2 i_ff3 pass4
11 EF / RI_BIT YYERRC. ff_i pass1 pass2 i_ff3 pass4
12 VF > CH_BIT YYERRC. ff_i pass1 pass2 i_ff3 pass4
13 SW ( F_SW YYERRC. ff_i pass1 pass2 i_ff3 pass4
14 CF { F_CF YYERRC. ff_i pass1 pass2 i_ff3 pass4
15 NCONST  = ARITH NUMBER ff_i pass1 pass2 i_ff3 pass4
16 INPB ] OUTX YYERRC. ff_i pass1 pass2 i_ff3 pass4
17 INPW [ ARITH YYERRC. ff_i pass1 pass2 i_ff3 pass4
18 INPX < TRAB YYERRC. ff_i pass1 pass2 i_ff3 pass4
19       CLK : MAX_LV CLCK YYERRC. clock_i pass1 null1 i_ff3 null1
20      TIM ! TIMR YYERRC. clock_i pass1 null1 i_ff3 null1
21 ALIAS @ MAX_OP GATE YYERRC. clock_i pass1 null1 i_ff3 null1
22 ERR ? GATE YYERRC. clock_i pass1 null1 i_ff3 null1
23 KEYW ; MAX_LS 24 C TYPE 25 C W OR D 26 IFU N C T    31 TM

Define output type Functp2 Functp2 Functp2 Functp uint
ftype fos gt_fni types yacc token initAct masterAct slaveAct init2 bit2

0 UDFA U UDF UNDEF err_fn err_fn err_fn null1 0
1 ARITH A AR N /AR N C A VA R arithMa arithMa err_fn gate2 INPT_M
2 GATE  MAX_AR OR /LOGC LVAR gateMa   gateMa err_fn gate2 INPT_M
3 GATEX  _ OR /LOGC LVAR gateMa gateMa err_fn gate2 INPT_M
4 RI_BIT E MIN_ACT EF YYERRC. link_cl riMbit riSbit i_ff2 RI_B_M
5 S_SH  s SH YYERRC. link_cl sMsh sSsh i_ff2 S_SH_M
6 R_SH  r SH YYERRC. link_cl rMsh rSsh i_ff2 R_SH_M
7 D_SH H SH YYERRC. dMsh dMsh dSsh i_ff2 D_SH_M
8 CH_BIT V VF YYERRC. chMbit chMbit chSbit i_ff2 CH_B_M
9 S_FF S 1001 FF YYERRC. link_cl sMff sSff i_ff2 S_FF_M

10 R_FF R 1010 FF YYERRC. link_cl rMff rSff i_ff2 R_FF_M
11 D_FF D 1011 FF YYERRC. link_cl dMff dSff i_ff2 D_FF_M
12 CH_AR v VF YYERRC. chMar chMar chSar i_ff2 CH_B_M
13 F_SW I SW YYERRC. link_cl fMsw fSsw null1 F_CW_M
14 F_CF F CF YYERRC. link_cl fMcf fScf null1 F_CF_M
15 F_CE G CF YYERRC. link_cl fMce fScf null1 F_CF_M
16 CLCK C CLK YYERRC. link_cl fMfn clockSfn i_ff2 CLCK_M
17 TIMR T TIM YYERRC. link_cl fMfn timerSfn i_ff2 TIMR_M
18 TRAB B MAX_ACT INPX YYERRC. err_fn err_fn err_fn null1 0
19 OUTW W ARN AOUT outMw outMw err_fn null1 OUTP_M
20 OUTX X AND LOUT outMx outMx err_fn null1 0
21 CLCKL : ERR CVAR err_fn err_fn err_fn null1 0
22 TIMRL ! ERR TVAR err_fn err_fn err_fn null1 0
23 F_ERR  e MAX_FTY ERR YYERRC. err_fn err_fn err_fn null1 0
24 ARITH_ALIAS aA arithmetic input, arithmetic output
25 GATE_ALIAS  a logic input, arithmetic output
26 GATEX_ALIAS   a_ to colour names of alias nodes correctly arithmetic   input, logic output
27 INV_ALIAS ~ logic input, logic output, inverted
28 INVX_ALIAS   ~_ logic input, clock output
44 CLCKL_ALIAS  a: logic input, timer output
45 TIMRL_ALIAS  a!     icc.ods  1.24     2015/06/06

  Live display
These values are only used in iClive
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