
A MONITOR FOR REAL-TIME
CONTROL SYSTEMS

E. Wulff, B.E.

Thesis project carried out as part of a Master of Engineering Science course at the
University of New South Wales.

2

Table of Contents
Thesis project carried out as part of a Master of Engineering Science course at the University of
New South Wales...i
PREAMBLE...4
1 INTRODUCTION...1

1.1 Real-Time Systems..2
1.1.1 Occupancy..2
1.1.2 A typical system...4
1.1.3 Difficulties with Uni-programming...5
1.1.4 Multi-processor Systems..5
1.1.5 Time-sharing..5

1.2 System Structure..5
1.2.1 Process Independence..6
1.2.2 Function of the Hardware Interrupt...6
1.2.3 Instantaneous Description..6
1.2.4 Timing Considerations...7
1.2.5 Device Service Routines..7
1.2.6 Processes and Tasks...10
1.2.7 Task Control Block...11
1.2.8 Task States..12
1.2.9 Task Implementation..12
1.2.10 Concepts related to Tasks...13
1.2.11 Ideas taken from Hardware Design..14
1.2.12 Events...15
1.2.13 Event Synchronization with Event Control Words..16
1.2.14 Critical Sections...19

2 REAL TIME OPERATING SYSTEM 'OSCAR'..21
2.1 System Hierarchy...21

2.1.1 LEVEL 0..21
2.1.2 LEVEL 1..22
2.1.3 LEVEL 2..22
2.1.4 LEVEL 3..22
2.1.5 LEVEL 4..23
2.1.6 LEVEL 5..23
2.1.7 LEVEL 6..24
2.1.8 LEVEL 7..25

2.2 Interrupt Handler..26
2.2.1 Return from Interrupt...26
2.2.2 Task Scheduler...26

2.3 OSCAR Meta-Instructions...27
2.3.1 Address Parameters..27
2.3.2 Supervisor Call...27
2.3.3 Exit from Supervisor..28
2.3.4 Post an Event..28
2.3.5 Wait for a Single ' Event...29
2.3.6 Wait for Multiple Events..29
2.3.7 Semaphores..31
2.3.8 Lower a Semaphore...31
2.3.9 Raise a Semaphore...31

3

2.4 Simple Drivers and Interrupt Handlers..31
2.4.1 Teletype Driver and Interrupt Handler...32
2.4.2 Drivers and Interrupt Handlers for other Terminals...33
2.4.3 Data Communications Multiplexor Driver..34

2.5 Double Ended Queues...36
2.5.1 DEQ Initialisation Routine...36
2.5.2 Get a Cell from a DEQ...37
2.5.3 Put a Cell on a DEQ...38

2.6 Elapsed Time..38
2.7 Event Scheduling...38

2.7.1 Time Scheduling..39
2.8 DEBUG TASK...40
2.9 Applications of OSCAR...41

2.9.1 Ore Sorter...41
2.9.2 Materials Blending System..42

3 OTHER OPERATING SYSTEMS..43
3.1 A Multiprogramming System developed by B. Williams..43
3.2 THE" - Multiprogramming System...44
3.3 The Venus Operating System...45

3.3.1 Critical Comments on the Venus System...46
3.4 The Data General Real-Time Operating System (RTOS)..47
3.5 HP 2005A Real Time Executive System...50
3.6 The HP 12659A DACE System...50
3.7 VORTEX. Varian Omnitask Real Time Executive..51
3.8 The Tenex Time Sharing System...52

4 CONCLUSIONS...54
4.1 References..56

5 APPENDIX..57

4

PREAMBLE
This thesis was started in 1969 as part of a Master of Engineering Science course at the school of Electrical
Engineering at the University of NSW (UNSW) and completed and submitted in 1972. The subjects studied
were mainly computer science subjects. An exception was Reliability Engineering, a topic which I had
previously already been very interested in while designing large electronic switching systems for the
telephone industry. In my career as a Software Engineer I concentrated very much on producing reliable
software and developed methods to ensure that software was reliable. Since this thesis was produced when I
was first introduced to computer software, it already shows my efforts to bring an engineering discipline to
the field of software design.

The first version of the Real Time Operation System ‘OSCAR’ described in this thesis was implemented in
1970 on the PDP-8 computer of the school of Electrical Engineering. It worked beautifully with just the
Teletype I/O and high speed tape reader and punch I/O. At the time I was working for the CSR company in
Sydney at their research laboratory designing electronic switching systems for factory control using TTL
logic IC’s. I convinced the company to buy a Data General Nova computer in 1970 to develop industrial
control systems using mainly software. The Nova was a more powerful machine. It had 4 16 bit
Accumulators compared to a single 12 bit Accumulator for the PDP-8. Hence I ported OSCAR to the Nova
computer, without changing the basic design. It worked well for a number of projects carried out at the
research laboratory (2 of which are described in the thesis). Unfortunately I was never allowed to publish any
papers about this work at the time. It was deemed to be too valuable and was classed as company
confidential. Even this thesis was not allowed to be put in the University of NSW library for 10 years and I
had to sign a non-disclosure agreement for the next 10 years.

In 1988 I was working for a manufacturer of PLC’s in Germany and was given the task of writing the
firmware for their new generations of PLC’s based on National Semiconductor and later on Siemens 16 bit
microprocessors. In both cases I ported the OSCAR design to these processors. The PLC’s produced had
built in networking and were very fast and reliable. The colleagues working with me particularly liked the
modular structure of the OSCAR system. In 2018 I was most gratified to learn, that one of the colleagues
working with me on the PLC’s was still using the OSCAR design for industrial control computing at another
large German manufacturer.

For the 50th anniversary I have taken on the job of scanning the typed manuscript of the thesis using modern
optical character recognition (OCR) to produce a LibreOffice (ODF) document. I had to do hardly any
corrections – OCR is that good now.

I hope many programmers will still gain some useful insights into an alternate way to structure interrupt
systems and task scheduling in a way which is fast and clear to follow.

John E. Wulff

Bowen Mountain, Australia

January 2019

PS: Only minor changes and spelling corrections have been made for this copy.

1

1 INTRODUCTION
The use of digital computers in a real-time environment imposes many restrictions on programmers which
are not encountered in conventional data-processing. These restrictions can be traced to timing problems in
making the computer keep pace with the real world. The tendency of modern computers to become faster and
faster tends to alleviate such problems, but this tendency also opens the possibility of using digital computers
in more complex high speed systems. In the long run it is important that the real-time computer programmer
has at his disposal a programming system which handles details of synchronisation with events external to
the computer and breaks up execution of segments of program in such a manner that all timing requirements
are met.

This thesis will analyse a number of schemes presented in the literature for achieving such aims. It will then
outline a system which combines what are felt to be the best features of systems in the literature. From this a
working Operating System has been developed.

This Operating System has been used. in two computer control systems, one of which is operational at the
time of writing and the other is nearing completion. It has been called OSCAR which is short for "Operating
System, C.S.R. Automation Research". The work was carried out at the C.S.R. Research Laboratories in
Sydney, Australia.

The use of multi-task systems has now become accepted although at the beginning of this work it was quite
rare. Many publications stressed the pitfalls of concurrent operations, pointing out that the sequence in which
instructions are executed cannot be defined and hence not tested1. Wegner has overcome this problem by
introducing the concept of the 'instantaneous description’2. The interrupt facility of computers was seen as
the main stumbling block, because it effectively inserts instructions at unforeseen points in a program 1. To a
lesser degree data channel transfers modify memory in parallel with program execution. This does not appear
to cause as much alarm, possibly because of the well-defined hardware sequence which controls these
transfers. Later I will endeavour to show that most interrupt controlled data transfers can be made to operate
just like hardware controlled data channel transfers.

A point which I see as a major stumbling block in coming to grips with the interrupt system of a computer is
that there is a popular misconception of its function when it comes to incorporating it in a programming
system. Because the action of trapping to another location at some indeterminate point in a program forms
the major departure from normal operation, it is often forgotten that an interrupt is only the reply by some
external device to a previous activation. Instead interrupt handlers are often structured as if interrupts
occurred completely spontaneously. This manifests itself in
interrupt and device handlers and sometimes even complete
systems, which start at the interrupt locations and work their
way through a massive number of switches which have
recorded the mode of the system at any point in time3.

Figure 1 illustrates such a system which is characterised by a
tree structure whose root is the interrupt location and whose
branches are open ended. They consist of segments of program
which terminate when no further computing can be carried out
until the next interrupt signals that new data is available. Then
the whole maze is traversed again to locate which segment
must be executed next. When an attempt is made to introduce
multiple interrupts into such a system the whole concept breaks
down. Most serious systems therefore do not follow the above

2

approach completely, but nevertheless it stands as the basic philosophy of most systems and appears to guide
the thinking of most programmers in dealing with the interrupt.

It is my thesis that if multi-programming systems are structured in such a way as to reflect the simple fact
that an interrupt is a signal from a peripheral device that an action initiated by a computer program is now
completed, then the way is open to a clear and orderly system which can be debugged simply, and whose
operations can be tested rigorously.

This problem has been overcome by the introduction of Synchronising Primitives. Primitive operations have
the property that only one at a time can be executed by concurrent processes. These operations will be
described in detail in a later section.

1.1 Real-Time Systems
For this thesis a 'real-time' environment is defined as one is which the time scale of computer operations is
critical and is dictated by the requirements of an environment external to the computer 1. The 'response time'
of a system becomes important in the real-time context. Adequate response times vary for different
applications. Examples quoted in the literature are a few milliseconds for radar scanning systems, three
seconds for Airline reservation systems and five minutes for controlling a paper mill.

One of the specifications for the operating system outlined in this thesis was a response time of substantially
less than one millisecond for certain services. This response time is not required for all services. What is
important is, that the priority of a service program and the time to execute service programs at different
priorities is such, that a satisfactory response time for a given service can be achieved.

1.1.1 Occupancy
To visualise the interrelations of a number of computer programs the concept of computer occupancy is
useful.

If we assume that a computer is servicing two types of events simultaneously, Type A at 1 ms intervals and
Type B at 100 ms intervals. If we also assume that the time to service each of these events is 60 µs and 6 ms
respectively. The occupancy for either type of event is 6% and the occupancy for both together is 12%. If the
Type A event causes the highest priority computer response and the Type B event the second highest priority
response, it is easy to see that the response time to the-.Type A event is 60 µs. For the Type B event the
response time is 12 ms which is made up of the 6 ms actual servicing time interspersed by 100 higher
priority services at 60 µs duration, totalling another 6 ms.

Occupancy=
Time to service an event
 Time bettween events

3

If events activate processes which are executed at different priorities, we can define the following terms -

Time between events activating process i = tei

te can be estimated from an analysis of the application when designing the system.

Time to execute process i = txi

tx can be estimated when writing the code for process i by counting instructions.

The following relations summarise the previous discussion if we assume processes are numbered in order of
priority:

Occupancy of process i

Total occupancy of processes 1 to n

Response time of process n

We can now quantify the definition of a real-time system and state that in a real-time computer system the
Total Occupancy of all processes in the system must be less than unity.

By estimating te and tx. while programming it becomes fairly obvious which pieces of code should be made
to run efficiently. In programming one often looses sight of the relation of a particular piece of code to the
whole program. The above concepts have proved to be helpful as a guideline while programming real-time
systems.

Oi=
txi

tei

TOn=∑
i=0

n txi

tei

trn=TOn∗ten

4

1.1.2 A typical system
To highlight some of the features which are required in a real-time operating system and to illustrate some of
the time constraints which are encountered in practice, a typical system will now be described. This system is
a computer controlled installation for blending and metering liquids, such as petrol. At a distribution depot
road tankers are filled with petrol. Because different types of petrol are marketed, various additives must be
incorporated in the correct proportions as the tankers are filled. The amount of petrol, the grade and the
proportion of each additive for a particular load are entered into the system at a keyboard terminal. This is
done as orders are received, and may be several days in advance of actual delivery. The keyboard terminal
must respond to a number of questions typed by the operator and its functioning should be independent of
the actual filling of tankers. It may be necessary to allow for more terminals if the amount of work requires
it. Again terminals should appear to be independent of each other.

A tanker filling station consists of a number of valves or pumps which allow different grades of petrol to
flow into the tanker. The flow is measured with an accurate flow-meter. Such meters produce pulses, one
pulse for every increment of volume which passes through the meter. These pulses interrupt the computer
which counts them to integrate the flow. By arranging to turn off the flow when a given number of pulses
have occurred, a given volume of petrol can be metered out. In practice temperature compensation would be
desirable to convert this to a mass flow. To incorporate a given proportion of additives, a fixed volume of
each additive is pumped into the petrol for a computed number of increments on the main flow. If several
additives are required this produces quite a complex sequence of pumping actions.

Typical flow-meters with the required accuracy would interrupt the computer 2,000 times a second. Thus te
in the worst case is 500 µs. In the OSCAR system interrupt service for flow-meters(and the real-time clock)
is 15 µs. Occupancy for each flow-meter (and the real-time clock) is thus 3%.

This shows immediately how many such flow-meters could be serviced in parallel. 3% is a reasonable figure
and would allow the implementation of up to 10 filling stations giving a worst case occupancy of 30%.
Interrupt handlers in other systems have a typical tx of 100 µs. This would immediately make the Occupancy
for one flow-meter 20%. This would make the time-sharing of more than 5 flow-meter processes impossible.
In practice something might be left over for the rest.

The proposed blending system is to be designed with 5 outlets. Thus 5 main flow-meters are required. Also
the computer programs for each outlet would be very similar, since each outlet is essentially the same. The
only difference is in the actual flow-meter and valve. Each outlet has its own set of these. This situation is
best handled by what is known as re-entrant programs. Such programs may be active on a number of

5

different instances of the same job at the same time. Thus a system to handle such work should cater for re-
entrant programs. The same could be said for more than one terminal.

These could also be handled by multiple activations of the same. re-entrant program. OSCAR allows
implementation of such systems.

1.1.3 Difficulties with Uni-programming
Uni-programming is the way most people program a computer. A program is seen as a single thread of
instructions. All activities in the outside world will have to be brought into this single thread. This works if
external events are initiated by the same program and if the computer can afford to

be idle while waiting for such an external event. This is usually wasteful and in the case of such demanding
events as flow-meter pulses, it is hard to visualise a single thread of instructions keeping up with more than
one pulse train.

In general such diverse activities as keeping up with a keyboard terminal and running a filling station as
described in the last sections are difficult to join into a single program. Yet this is what many people are
doing, and it is very hard work.

1.1.4 Multi-processor Systems
Some writers have suggested using more than one computer, one for each major job in a system. I agree with
this approach if occupancy considerations make it necessary. Nevertheless, the need for some
communication between the separate computers is still necessary, and an overall operating system is still
required. Thus to use separate computers just to make programming easier is futile. The same can be
achieved with a multi-task system such as OSCAR.

1.1.5 Time-sharing
Time-sharing computer systems as distinct from real-time systems are characterised by the fact that in the
limit there are no real-time constraints in relation to the users as far as the computer is concerned. This
means that there are a number of terminals connected to the computer and these interact with the computer
and in the long run they share the computer equitably. In the short term nothing is lost if the job for one
terminal is held up. Only the user's peace of mind and patience are tried while waiting for a printout which
will come eventually. In practice this means that users may prefer to switch to a better system if the grade of
service is poor. In such instances the concepts of real-time programming outlined in this thesis could be very
useful to design a system which will give prompter service.

The starting point would be to classify the human user like any other real-time device. Apart from this the
programming for many of the peripheral devices of a time-sharing system such as disks and line-printers can
be treated in isolation if a real-time approach is adopted. Even multi-processor systems can be planned in this
way, opening the way to a modular upgrading of a facility as its usage increases. Such an approach has been
adopted on the latest Burroughs systems.

1.2 System Structure
To achieve adequate response times from a computer system while maintaining total occupancy below unity
it is useful to employ a structure in which the total job is divided into a number of sections. Each section
which we have previously called a process is required to service a particular event or series of events. For the
programmer using an operating system such as will be outlined it is useful to regard processes as
independent of each other except when deliberate interaction is introduced.

6

1.2.1 Process Independence
Such independence can best be visualised in a system in which each process is carried out on a separate
computer. It then becomes a fairly simple matter to devise a program to carry out the servicing of a particular
event. Once this service is completed the computer only has to wait for
the next occurrence of the event to repeat the cycle. Such "Wait loops"
are common in programs using unbuffered input and output from a
single Teletype. Synchronisation with the device is achieved by testing
a hardware flag and branching back to the test instruction if the flag
indicates that the program should not proceed.

Such a scheme whose flowchart is shown in Figure 4 is easy to
understand by the average programmer, but it would be completely
unacceptable in a real-time system.

Since the operation of repeatedly testing the hardware flag is not really useful except in the instance when
the flag finally sets, it is possible to specify a system in which the testing of the hardware flag is replaced by
a call to an operating system which has the effect of suspending the process which contains the call until the
flag sets. During the period of suspension lower priority processes would be able to carry out their work.

Looked at from the outside a process using such a system call would be indistinguishable from a timing point
of view from one using continuous testing of a hardware flag. More importantly the program using the
system call is virtually unaltered. Only the hardware flag test loop has been replaced by a system call which
we shall call the 'WAIT' call. This is the first of four synchronising primitive operations provided by the
system.

1.2.2 Function of the Hardware Interrupt
Most digital computers have what is commonly called an interrupt facility. This facility was initially
designed to allow overlapping of computing with Input/Output. This can cause serious problems to unwary
programmers. It is important to ensure that only a well defined set of registers is modified during Interrupt
Handling.

1.2.3 Instantaneous Description
The concept of 'Instantaneous Description' was used extensively in developing this system. Wegner defines it
as the contents of all registers in the processing unit and memory of the computer at a given point of the
computation2. Obviously it is inevitable that any form of interruption will modify such an instantaneous
description. It is therefore necessary to settle on a reduced set of registers to which normal user programs are
restricted leaving the remainder for interrupt service programs. It is then possible to avoid modification of
the reduced instantaneous description.

The setting of a hardware flag marking the completion of some external operation is usually coupled with an
interrupt. The interrupt can thus be regarded as the signal to continue operation of a process which has issued
a WAIT call for that external operation. In a typical real-time system there are many peripheral devices
which can interrupt the computer. It is the function of the INTERRUPT HANDLER program to establish
which device is currently interrupting and to invoke the appropriate DEVICE SERVICE ROUTINE. Since
all interrupts, whether they belong to high speed or slow speed devices have to pass through the interrupt
handler, it is important to make this routine as short as possible to reduce system overhead which can be
regarded as an unproductive form of occupancy. The latest implementation of the operating system described
in this thesis carries out these functions in six computer instructions.

7

1.2.4 Timing Considerations
Communication with peripheral devices is a prime requirement in computing. This communication is
different from ordinary program flow because the speed of peripheral devices is often based on mechanical
movements whereas the messages can be received and transmitted by computers at much higher speeds. This
problem is more serious in process control application where the devices that a computer has to
communicate with are usually not designed to be computer compatible. Despite this it is the generally slow
speed of peripheral devices which makes multiprogramming feasible. The average time to service a device
(tx) is usually much less than the average time between steps of a device (te). Thus the occupancy for

servicing the device is less than unity and the remaining computer occupancy can be shared among other
devices.

This view of looking at the time scale of operation in the computer purely from the point of view of the delay
caused by devices is not always valid but it is an important consideration in all systems which are
Input/Output bound. In OSCAR it provides the means for fitting service for all devices into the available
time. This implies that there is a priority structure which gives precedence to devices with high rates of
activity and allows their service routines to interrupt the service for slower devices. The allocation of
priorities is the responsibility of the users of this system. The exact choice is not very critical unless the total
occupancy approaches unity in which case the overall interaction of the different sections has to be
considered most carefully. The system at this stage does not cater for more than one process which is
completely compute-bound. This has not proved a disadvantage in the applications handled so far. It would
be a fairly easy step to execute a number of compute-bound processes on a timed, round-robin basis.

1.2.5 Device Service Routines
The structure of the Device Service Routine in the system is a software extension of the hardware. The
nucleus of the system only provides certain primitive operations which are not normally provided by
computer hardware but which can be regarded by programmers as hardware functions.

Use of these primitives provides a uniform method of generating device service routines which are both
efficient in terms of occupancy and easy to understand by the user. It was felt absolutely essential that the
user could develop his own device service routines in view of the varied nature of devices encountered in
process control situations. Also it was considered important that the user should not be forced to follow a
very rigid pattern to implement his ideas.

For the above reasons the philosophy of the Device Service Routines found in a number of Real-Time
Operating Systems has not been followed. The implementation in 'RTOS’10 is typical. In that system a call to
perform I/O is accompanied by five parameters which specify a logical device number, a device control
word, a data pointer, a data item count and an error return point. Such a call is very useful for the
transmission of groups of characters or words of fixed length but the overhead in using such a call for
simpler operations, e.g. transmitting one single character to a device, is very high both in execution time and
in lengthy calling sequences which a user has to write. Execution time becomes very high because each time
the call is executed the full list of parameters has to be interpreted before the action required can be carried
out. Nevertheless such a call can be implemented in OSCAR using the synchronising primitives and this has
been done for a project involving a number of on-line display terminals.

The structure that has been chosen is based on the criterion that activity both inside and outside the computer
can be broken up into intervals whose transitions constitute 'events'. Particularly the actions of peripheral
devices can be thought of as a series of events separated by periods of internal activity whose details are not
of interest to the programmer.

8

The usual hardware method of synchronisation with computers follows this principle. A device is usually
started by a pulse from the computer. This marks the beginning of a cycle, which is an event. The completion
of the cycle is another event which is signalled to the computer by the device sending out a pulse. Since
pulses are transient phenomena, the pulses in either direction usually set a bistable device or 'flag'. In the
Nova range of computers the symmetry of this situation has been embodied in the design of the standard
interface, shown in Figure 5.

In this type of structure, which is commonly called the
'Handshake' system, the 'Device' is activated by the
steady state signal put out by the 'BUSY' flag which is
set from the computer. When the 'Device' has completed
its cycle, it sets the 'DONE' flag which signals the
computer to do its share in continuing the action. From
the point of view of the computer it starts a device and
then waits for the answer signalling completion.
Similarly from the point of view of the device, it signals
completion of a cycle and then waits for a signal to
carry out another cycle. The situation is quite
symmetrical.

The general strategy can also be implemented in the software of the computer. This part of the operating
system can be thought of as a software interface between the computer I/O system and the user programs.
Nico Haberman points out that a pair of hardware flags such as 'BUSY' and 'DONE' as in Figure 5
correspond to a software pair of flags operated on by primitive operations 'WAIT' and 'SIGNAL', which he
defines4. These have not been used in OSCAR but they perform similar functions to operations in this
system. He proves that two such flags are necessary and sufficient to synchronise communication between a
program and a peripheral. He then draws the conclusion that there is essentially no need for a supervisory
process through which all device requests are channelled and which is the only one that issues commands to
the device. This course has been adopted in OSCAR.

In implementing this strategy it is not necessary to stick precisely to the hardware functions for a device. For
example, it is possible to implement a software interface with a buffer for a device which only transmits
single bytes, such as a Teletype reader. In this case the user makes a call on the operating system to initiate
transfer of a number of bytes to the buffer. A buffer address pointer and buffer counter value must be set
during this call. The user then waits until the last byte has been transmitted from the hardware. All
transmission of bytes and storing of them is done in a device handler program which is activated at intervals
by interrupts from the device. When the last byte has been stored the handler, which constitutes the software
interface, signals the user to indicate to him that the event that he has been waiting for has now occurred.

This type of structure is analogous to the usual implementation of hardware interfaces for devices with very
high transfer rates such as fixed-head discs. A hardware instruction presets the buffer address pointer. The
buffer length is usually fixed. Another hardware instruction sets the disc address and initiates the transfer. As
each word is received from the disc, it is stored in the computer memory through a hardware facility called a
Data Channel or Direct Memory Access (DMA). When the last word has been received, the hardware causes
a conventional interrupt to occur which in this case signals that a full buffer has been transferred.

In the software implementation, an analogous device interrupt service routine which is activated by each
interrupt from the device takes the place of the Data Channel cycle. The interrupt when the buffer is full is
replaced by the operation called 'POST'. This operation is the second synchronising primitive of OSCAR. It
marks the occurrence of an event.

9

For each interrupt (1 character transmitted) except the last one, this Interrupt Service Routine typically steals
about 12 instruction times from the program which has been interrupted. This is broken up into 2 instruction
times for the interrupt hardware cycle, 3 instruction times for the Standard Interrupt Service which has to
determine which device service to branch to, 4 instruction times for the Device Interrupt Service routine and
3 instruction times for the Return From Interrupt which restores the interrupted program.

Twelve instruction times for that part of the device service which is repeated many times is felt to be the best
than can be done on the Nova computer on which these concepts were implemented. For other computers
with more powerful interrupt hardware this time may be reduced and it is felt that time saved in repetitive
interrupt servicing is always worthwhile.

Having disposed of the middle section of Device Service routines, we can now look at the beginning and
end. The beginning must originate in a 'user' program which requests a transfer of one or more characters to a
certain buffer. Apart from setting the buffer pointer and buffer counter, the device must be started to fetch the
first byte. It is this first action which causes the first interrupt when the device has completed its first cycle.
In the present implementation hardware I/O instructions are allowed to start the device. In later
implementations it is proposed to use hardware which does not allow users to execute such instructions and a
form of Supervisor Call will have to be used for initiating all I/O. A typical form of I/O call is shown in the
code below. This code also shows the termination of the transfer.

Users, having initiated an I/O operation usually want to suspend their program until the transfer has been
completed. This is achieved by the 'WAIT' call to the operating system. The 'WAIT' call has one parameter
which is the address of a one word location called an 'EVENT CONTROL WORD'. In the example
considered so far the transfer of the last character, which is detected by the Device Interrupt Service shown
in Figure 5 results in POSTing the same EVENT CONTROL WORD. The WAIT and POST operation are a
pair which achieve synchronisation, while the EVENT CONTROL WORD acts as a pair of flags which carry
out a function similar to the BUSY and DONE flags in the hardware interface shown in Figure 5. A more
detailed description of these functions will be given in Section 2.

To summarise the operation of the Device Service Routine: a user programme makes an I/O request;
interrupts activate the Device Service Routine when required and finally the last interrupt allows control to
return to the User.

NOTE

• The user program need not wait for completion of the call immediately the I/O request is made. It is
possible to carry out further computation after the I/O request is made and then wait for completion
of the transfer when the new data is required.

• In the case where transfer of only one byte is requested, the sequence reduces to the I/O request
followed by a WAIT call. The first interrupt signals completion of the transfer and POSTs the caller.

The following code shows a routine to get a single character from a Teletype and the associated Interrupt
Service Routine in Nova assembler language.

; GET CHARACTER ROUTINE FOR TELETYPE ;
; CALLING SEQUENCE:

JSR GET
next statement

GET: STA 3,6 ; SAVE RETURN
.WAIT ; WAIT FOR TRANSMISSION OF
TTIEC ; THE NEXT CHARACTER

10

SUBC 3,3 ; CLEAR ACCUMULATOR 3
STA 3,TTIEC; CLEAR TTIEC
DIAS 0,TTI ; READ CHAR FROM TELETYPE
JMP @6 ; RETURN TO USER

; THE FOLLOWING WORD IS THE 'EVENT CONTROL WORD' LINKING THE TWO SECTIONS

TTIEC: 0 ; INITIALLY CLEARED

; TELETYPE INPUT INTERRUPT SERVICE
; AFTER SAVING ACCUMULATOR 3,
; THE MAIN INTERRUPT HANDLER BRANCHES TO 'TTIS'
; WHEN A 'TTI' INTERRUPT OCCURS

TTIS: NIOC TTI ; CLEAR THE DONE FLAG TO
; PREVENT FURTHER INTERRUPTS

.POSTI ; POST OR SIGNAL THE USER
TTIEC ; VIA THE EVENT CONTROL WORD

; SIGNALLING THAT THIS CHARACTER IS READY

This interrupt service programme appears somewhat trivial but it allows practical time-sharing or multiprogramming which is quite
efficient, while maintaining the simplicity of structure of the Get Character routine using flag testing.

; BUSY WAIT GET CHARACTER ROUTINE FOR TELETYPE ;

GET: SKPDN TTI ; WAIT FOR DONE FLAG TO SET
JMP .-1
DIAS O,TTI ; READ CHARACTER
JMP 013 ; RETURN TO USER

Further ideas on this topic will be taken up in Section 2.3.4 dealing with the synchronisation primitives
WAIT and POST.

1.2.6 Processes and Tasks

The word Process has been used loosely in Section 1.2.1 to talk about a computation. E. W. Dijkstra has
written a complete monograph on sequential processes3 and the co-operation between them without ever
giving a formal definition of a process. His processes appear to be Algol programs with curious appendages
called "parbegin" and "parend", which suddenly endow these programs with a capability to exist in parallel.
Lampson6 summarises the characteristics of a process thus:

"A process must have, at least conceptually, a processor of its own to run on".

He also speaks of a "process or a processor executing a program. The process is the logical, the processor the
physical environment for this execution".

To allow this implementation of more than one logical process on a single processor, these processes must be
multiplexed or time shared on the processor. A special data structure is used to carry out this function.

This data structure will be called Task. This Task concept is used in OS 360 and many of the concepts which
follow have been taken from that system7. A Task consists of block of memory in which all those registers of
the processor which it must share with other Tasks, are saved and a program which will be executed when
the Task is run.

11

The block of memory in which the processor registers are saved is
called the TASK CONTROL BLOCK (TCB). The Task Control
Block holds much of the variable part of the instantaneous
description mentioned in Section 1.2.2.

In OSCAR the registers saved in the TCB are the four
Accumulators, the Carry bit, the Program Counter and eight
memory locations. The TCB also contains two other words which
are used by the synchronising operations.

Closely connected with the instantaneous description of a task is the
initial representation. This is the static value of the instantaneous
description before execution is started. The initial representation is
important for the practical implementation of a system. It allows
initialisation of each task to be defined by the programmer during
the program assembly phase. In OSCAR the initial representation
follows immediately after each TCB. A program called SYSTEM
START copies the initial representations into each TCB and then enters the task scheduler. This feature was
not included in earlier implementations. Here the Initial Values of the registers of the Task Control Block
were assembled as constants into the space occupied by the TCB. As a consequence the system could not be
re-started once it had been run unless a complete reload was done. This proved tiresome in the real-time
situation and the Initial Values were stored separately as part of the Task.

The ability to re-start a system has a more important advantage in systems for controlling machinery. Such
systems are usually provided with a Task whose execution checks the operation of all the parts of the
computing system as a low priority activity. If such a check uncovers a fault, it is often sufficient to record
the occurrence of the fault, give an alarm and then re-start the system, hoping that the fault does not occur
too frequently. This scheme allowed the successful operation of a computer control system in a remote
location, despite the existence of a minor fault which was rectified during a subsequent regular visit.

1.2.7 Task Control Block
The most important register that must be saved in the TCB and for which an initial value must always be
provided is the Program Counter of the processor. The initial value of the PC points to the statement in the
program associated with the Task at which execution will start. Thus each Task written by the user has its
own starting point which is normally associated only with independent stand-alone programs.

The provision of space for other registers is optional. On the Nova very little computing could be done
without the 4 Accumulators and the Carry register so space is provided for these in the TCB. On top of this,
certain memory locations are also saved in the TCB for each Task. Thus programs may use these as private
memory locations which will not be disturbed by other Tasks using the same locations. In the first
implementation of the system, only 2 such private locations were provided. These were chosen as Location 6
and 7 in the memory. (Example: program "GET" Section 1.2.5 uses Location 6 to save an accumulator). This
system was tailored for speed and thus no other private registers were used. The latest implementation uses 8
private locations. Two of these are auto-incrementing and two are auto-decrementing registers. These
registers are a hardware facility provided in only a few locations in low memory on the Nova. If these
locations were not made private, this hardware facility could not be used effectively in tasks. The provision
of private locations makes the writing of re-entrant programs much easier. This is very important in a multi-
programming system. Re-entrant programs may be executed by a number of tasks simultaneously. They must
have the property that they do not modify themselves. The private locations or a work area pointed to by a
private location are then the only memory locations which a re-entrant program may modify.

12

The Floating Point Interpreter supplied by the manufacturers of the Nova is fully re-entrant and only requires
private locations 6 and 7 and a work area whose address is in location 7 for each Task calling on the Floating
Point Interpreter. This means that every task not only has its own pseudo-hardware processor but also its own
floating point processor.

Floating Point Accumulators are stored in the Floating Work Area which can be regarded as an extension to
the TCB. The TCB stores 3 other registers which are used by the operating system to schedule tasks. One is a
Hardware Priority Mask which determines which device may interrupt the Task when it is active and which
may not. The remainder are a Wait Count and a Back Pointer. The Wait Count is used when a Task is
suspended either as a counter of how many events should be posted before re-activation, or as a link word,
linking a number of suspended tasks into a queue. The Back Pointer gives a backward reference to the entry
for this task in a list of all tasks. It is never modified.

A Task is identified by the address of the first location of its TCB. In this implementation 26 external names
have been defined which range from TCBA to TCBZ. If the TCB addresses are given one of those names, the
TCB will be put on to a Task Queue when the Operating System is loaded. The Priority of Tasks is
determined by the ordering in the Task Queue. TCBA is always loaded first, TCBZ last. Thus a priority can
be established by naming tasks with TCBA for the highest priority task and TCBZ for the lowest priority
tasks and all others in between in alphabetical order. The priority of tasks means that if two tasks are ready
for execution, the operating system will schedule the highest priority task first and execute it until it suspends
itself or it is interrupted, and a higher priority task is activated as a result of the interruption. A lower priority
task can only be executed when all higher priority tasks are suspended. This is a simple task-scheduling
strategy which may be augmented in future. At present it satisfies the needs of the systems it is to serve.

1.2.8 Task States
When Tasks are executing they may exist in a number of different states. Only one of these states require a
processor. OSCAR distinguishes three states which are described in the following section.

1. Active State : A task is active when a central processor is executing instructions in a program
belonging to the task with data also belonging to the task, or shared with other tasks. To mark this
state the address of the currently active TCB is stored in a known location (ATCB).

2. Ready State : A task is in this state when it is ready to use a central processor but is not active
because higher priority tasks or system programs are using all physical processors.

3. Suspended State : A task is in the suspended state whenever it must wait for the occurrence of an
event. Such an event may be the completion of an Input/Output operation, or the execution of one of
the synchronising macro-instructions in another task which can re-activate a task.

Some systems10 11 recognise another state called the Dormant state which is said to be a state which is none
of the previous three states. This is a state in which the Task either does not exist yet or the Task has been
deleted. In the present implementation which does not cater for dynamic tasks, such a situation cannot occur.
The nearest that a user could approach this state is to cause a task to be permanently suspended.

1.2.9 Task Implementation
It should be pointed out here that the method employed in generating tasks in a user system is to reserve
space for the Task Control Block and give this space one of the names TCBA to TCBZ, consistent with the
priority required. Immediately following the Task Control Block the user must provide an Initialisation
Control Word (ICW) followed by a list of Initial values for the TCB. In particular the initial value of the

13

program counter in the TCB must always be given and should have the label of the first instruction to be
executed in the task.

This method of generating a task is a static one. Tasks are generated with the programs through the assembler
and loader.

1.2.10 Concepts related to Tasks
Some thought has been given to an implementation using dynamic tasks. In such a system one task may
create another task and cause it to be executed. In the language of OS 360, one task "attaches" another task.
Conway and others8 3 have used the word 'fork'. The concept of 'forking' as seen by Conway is shown in
Figure 7 He explains that the 'fork' and 'join' in flowcharts have their counterpart in the FORK and JOIN
instruction

He defines as follows:

"FORK is simply an instruction with two successors. It is written
and acts like a branch instruction".. The next statement will be
executed as part of the current task but the location which the 'fork'
branches to will be executed in parallel as part of a new task
created at this point.

To implement such a scheme a new Task Control Block has to be obtained from a 'pool' set aside for this
purpose and the forking point entered into the TCB as its PC. It is desirable to copy the rest of the current
TCB into the newly created TCB so that the states of all the registers of the new task are the same as those of
the current Task at the point of forking. RTOS which implements such a scheme also allows the specification
of a priority for the new task. This is very important for creating real-time user systems.

The OSCAR System was written and working (May '70) 6 months before the preliminary specifications for
RTOS had been seen by the author (Nov. '70), and 18 months before a full write up and source tapes and
listings were obtained (Nov. '71). Certain similarities such as the abbreviation TCB, and the virtually
identical implementation of the timed event queue (see Section 2.7.1) must stem from the common
background literature and the likelihood of similar implementations of the same problem on the same
computer.

The differences in implementation and overall strategy are of significance also and I would here like to
justify my stand that a system using static Tasks is more useful to the average programmer for small real-
time systems than dynamic tasks implemented by means of FORK instructions.

The biggest limitation of the FORK instruction is a conceptual one. Conway states that it should be
conceived as a branch instruction. This is a realistic requirement in the implementation of algorithms in
which parallelism may be exploited. The example usually given is one of the matrix manipulations which are
obvious candidates for parallel execution. Conway8 also specifically introduces the FORK instruction to
allow the programmer access to a number of physical processors. Thus I see the FORK instruction as useful
where a programmer wants to code a single problem in such a way as to exploit parallel execution or
multiple processors and thus gain a speed advantage.

However, the problem usually facing the programmer in real-time systems (single processor only) is the
requirement to code a number of separate sections each of which will probably run indefinitely. These
sections can and should be isolated from other sections to allow them to be run and tested separately. The
Static Task fulfils this requirement. Coding within the task is the same as coding for a free-standing program
which has a full processor to execute. Communication with other Tasks is via well-defined Macro calls to the
operating system. None of these resembles a branch into another Task.

14

It has been argued by Dijkstra9 that the branch instruction in Algol, the GOTO, is unnecessary and spoils the
block structure of many Algol programs. In a similar way a FORK (GOTO) into another Task is even more
distressing because it tends to hide the true nature of a Task. An actual branch into another task is a
meaningless concept because only the Program counter has been modified. Both before and after the branch
have been executed, the same Task is still active. To appear to allow this situation in the special case of a
Fork tends to dilute this fact.

The popularity of the Fork instruction probably stems from the fact that programmers are not used to
thinking about their systems in a truly parallel sense. Because programs are sequential structures all the way
except for the actions of peripheral devices, trained programmers tend to look at systems this way too. The
present higher level languages only emphasise this situation because they take out I/O programming leaving
only a single thread program. PL/I is the only well-known higher level language which recognises parallel
processing but unfortunately the implementation is by the 'Attach' call which is the same as a 'Fork'. This
appears to give parallel processing a slightly sequential look.

The suggestions for a parallel processing capability for Algol5 made by Dijkstra is another approach to this
problem. He suggests that a series of Algol statements be surrounded by the special statement bracket pair
"parbegin" and "parend". This is to be interpreted as parallel execution of all the constituent statements. He
calls the construction a "parallel compound" which is to be regarded as a statement. Initiation of a parallel
compound implies simultaneous initiation of all its constituent statements. Although it is feasible to
implement real-time control systems using this version of Algol it was initially thought of as a means for
implementing algorithms which contain sections that can benefit from parallel execution.

1.2.11 Ideas taken from Hardware Design
My own approach to this problem has been guided largely by an education in engineering and some
experience in the design of relay switching systems and later electronic switching and control systems. In
this area everything is parallel. Every little building block goes about doing its small function all the time,
reacting, with a finite delay, to its input signals and transmitting the result via its outputs to other blocks.

Similarly larger units can be thought of in a similar way doing their more complicated function at the same
time as other units are doing theirs. It is surprising that computers which are devices of essentially this
structure do not inspire programmers to emulate this structure.

It is always a great problem in switching system design to produce a system which is going to work without
too many design faults or 'bugs' as computer people call them, when the system is built. A lot of work has
been done in the last 20 years to provide methods of analysis and synthesis which make this job easier.
Examples which come to mind are the Venn diagram or Karnaugh Map and the Huffman-Mealy method of
sequential circuit analysis1 8.

The greatest contribution to logic design has been the concept of strobing or clocking. This idea which was
originated in the late 1950's simplified logic design by allowing the specification of logic in terms of state
transition tables without worrying about the details of individual gate delays. Underlying the idea of strobing
is the idea of an indivisible operation. The transmission of the leading edge of a strobe pulse can be regarded
as a single indivisible operation and all elements which receive this strobe pulse are assumed to receive it at
the same time. The leading edge of the strobe pulse marks the boundary in time between two discrete periods
and any signal which develops in the second period is barred by the strobe pulse from causing any action in
that period. Only after another strobe pulse may these signals cause any change in the output. This scheme
would not work if the strobe pulses were divisible. Malfunction can occur in poorly designed systems if the
strobe pulses are not generated by the same source or the distribution network causes different delays.

15

The concept of strobing can also be applied to software design. The first requirements is an indivisible
operation. On most computers a machine instruction is an indivisible operation. This means that interrupts
can only occur between two instructions, not halfway between an instruction. Many computers allow
memory cycle stealing for data channels in the middle of instructions but this is not usually a problem. The
interrupt is the only external event which directly affects program flow. An example of a common divisible
operation which is often used and usually fails in an interrupt environment is the simple testing of a flag. In
many computers a memory location must be loaded into an accumulator before its contents can be tested. An
interrupt may occur between these two operations and before the flag is tested it may be altered, causing the
wrong action when the test is finally carried out.

An example of an indivisible test for a computer is the instruction:-

INCREMENT MEMORY AND SKIP IF ZERO

If an interrupt occurs before this instruction has been executed the flag in memory has not yet been modified
and execution after the return from interrupt will be correct. If the interrupt occurs just after the execution the
program counter will have the value appropriate for the flag in memory before the interrupt but the interrupt
routine will also see that the flag has already been tested. Unfortunately it is difficult to devise a scheme
which is foolproof using this instruction only.

To simulate more powerful indivisible operations the interrupt flip-flop must be turned off for a number of
instructions while the appropriate tests are carried out. Otherwise more elaborate instructions can be devised
which means altering the computer hardware. On some machines this latter approach may be carried out with
micro-programming.

In this thesis a number of indivisible operations for the purpose of software synchronisation will be
developed and their correct operation will be demonstrated.

1.2.12 Events
The concept of Events is fundamental to the development of this system. Events are defined as instantaneous
occurrences in the real time scale with the proviso that time is not continuous but is digitized into short
intervals by a computer. The shortest such intervals usually correspond to the execution of one machine
instruction. Events in the system environment always occur on the boundary between two such intervals. The
Nova device interface system allows this scheme to be used even with external events. A line from the
computer carries a clock pulse which is able to switch clocked flip flops after every instruction execution.
Thus the data inputs to these flip flops are synchronised to the computer instruction cycle. Their outputs
represent the same events as their inputs but they now fulfil the requirement that events should only occur on
instruction boundaries.

This scheme is used in the Nova to synchronise Interrupts with
the instruction flow.

External events can cause a computer to be interrupted or a computer program may test for the occurrence of
an event. In the latter case no special hardware synchronisation is necessary. The execution of the test
instruction will find the status line signalling the event either high or low, and the outcome of the test can

16

only be one way. The outcome is available at the end of the instruction execution. Again the event is known
to the process only in a discrete form. This way of looking at time is the same as in a sampled data system,
except here we are mostly interested in a binary value. An event has either occurred or it has not yet
occurred. The sampling process introduces quantizing errors into time estimates. The sampling rate of the
computer is of the order of 1 MHz for present day machines and this would not introduce a serious error for
most applications. But the number of instructions executed before an event can finally be acted upon is often
quite large. This introduces further and larger quantizing errors.

In the OSCAR system every attempt has been made to reduce this time, which is usually called the response
time, to a minimum. This has been done by avoiding the repetition of an operation where a single execution
of that operation is sufficient to carry out an action. Thus continuous 'polling' in any form is avoided if at all
possible. Secondly a conscious effort was made to optimise the code in critical routines for minimum
execution time.

This practice has been found worthwhile because it had a side effect of producing a clearer structure. It is the
author's view that the optimising of code can often be greatly assisted by modifications in the data structure a
program has to operate on. Thus the data structures in the OSCAR system are seen as the most significant
factor towards faster execution speed of the code.

Events in the system environment can also be thought of as the execution of particular instructions which are
of significance to other processes. In this operating system the only instructions which show any effect in
other processes are the synchronising primitives. One can then think of all the program which is executed up
to a synchronising operation as part of the one event. This is the sense in which Simulation languages deal
with events. Short programs are scheduled to take place at a given time. When this time arrives that program
is executed. The effect of this execution is to change the state of the system and possibly schedule a new
event. This scheduling takes place by sorting the new event into a queue of previously scheduled events
according to the system time when the new event is due. Then the system clock is set forward to the time of
the event on the head of the queue.

This system of scheduling was adopted for OSCAR with the modification that the system time now becomes
real-time as measured by an external oscillator. Whenever the next event on the queue is not yet due the
scheduling of events is suspended until the real-time has caught up with the time at which the next event is
scheduled. This system of scheduling events has the advantage that the real-time clock oscillator need only
increment one counter, yet events from many different tasks can be scheduled on the one clock queue.

1.2.13 Event Synchronization with Event Control Words
Event synchronization is the delaying of task execution until some specified event or events occur. The
synchronization has two aspects:

1. The requirement for synchronization is stated explicitly by the WAIT meta-instruction or is implied
by use of certain other instructions.

2. After the event has occurred, notice to the requesting task is given so it can proceed past the WAIT
point.

The notification required is performed by the POST meta-instruction. When the event is known to the control
program (for example, the completion of a read operation), the control program issues the POST. If the event
is known only to the user's program, the user's program must issue it.

As an example, the function of both tasks A and B in Figure 9 is to compute some value, display it, and then
proceed; the display to task A must precede that of B. Task A displays first, then issues the POST; task B
waits for A, and then displays its results.

17

A task may make several different requests and then wait for any number of them. For example, a task may
specify by READ, WRITE and DELAY meta-instructions that three asynchronous functions are to be
performed. When each of these requests is made initially to the control program, the location of a one-word
event control word (ECW) is also stated. The event control word provides the basic communication between
the tasks issuing both the original requests and the subsequent wait, and the posting agency (in this case, the
control program). When the WAIT meta-instruction is issued, the parameters supply the addresses of the
event control words corresponding to the requested services. Also supplied is a wait count that specifies how
many of the services (events) are required before the task is ready to continue. When an event occurs, the
following takes place:

1. The completion flag in the appropriate event control word is set by the POST meta-instruction.

2. A wait count test is made to see if the number of 'completion flags' satisfies the wait condition, and
hence if the task is ready.

After the task has again been given control, the programmer can determine what events did occur, and in
what manner. He does this (with instructions following the WAIT meta-instruction) by testing each event
control word.

Many requests for services may result in waits that are of no concern to the programmer - for example, GET
and PUT subroutines to get and print a character from a Teletype (1.2.3). In these cases, event control words
and wait specifications are handled entirely by the appropriate system subroutines.

The programmer is responsible for clearing event control words before each use. It is imperative that the
event to which an event control word pertains has occurred before it is reused. System subroutines will do
this before returning to the user. But it is important to clear all ECW's and this includes all system ECW's
which are used implicitly when initialising a Task. This allows a clean re-start to take place.

Programmers intending to make use of the event synchronisation facilities will find the following example
helpful.

A DELAY meta--instruction within program USER is followed by a WAIT for the completion of the input
event. Figure 10 shows the situation immediately after DELAY is executed.

• The event control word required for the operation is located in a main storage area belonging to the
task.

• Its address, "ECWA", was specified in the DELAY call.

18

• The appropriate input/ output program has queued the DELAY request and has placed the address
ECWA in the queue element.

Figure 11 shows the situation at the time the WAIT meta-instruction is executed. In this example, the
DELAY operation has not yet been concluded. The WAIT meta-instruction's parameters point to the event
control word location, and state that only one event is needed to satisfy the WAIT. The operating system, as a
result of the WAIT meta-instructions, performs these actions:

• Places the task control block address, "TCBA" in the event control word. Since this address is non
zero, it means that a task is waiting for the event to take place.

• Sets a 1 in the WAIT count indicator in the task control block to show the number of events being
awaited.

• Flags the task control block as being in the suspended state;

• therefore its task is no longer eligible to use the central processing unit. Passes control to the next
ranking ready task on the Task queue.

Figure 12 shows the situation at the time the Real Time clock has advanced to the time specified in the
DELAY call, when the input/output supervisor performs the POST function. The following then takes place:

19

• The event control word is located from the address ECWA in the queue element in the input/output
supervisor queue, and the completion bit of the event control word is set to 1.

• The wait indicator (Bit 1-15) in the event control word is tested to see if a task is waiting, in this
case, it is, so the task control block wait count is decremented by 1.

• The wait count in the task control block is now 0, so the task is placed in the ready condition,
eligible to compete on a priority basis for CPU time. As soon as there are no higher priority ready
tasks, execution continues.

In the preceding example, the program reached the WAIT meta-instruction before the requested input/output
operation was completed. If the input/output operation had been completed first, the completion bit would
have been set and the program would have proceeded without any interruption when it came to the WAIT
meta-instruction.

Event synchronisation which employs the WAIT and POST functions, is used mainly in the management of
external resources by the Operating System. When a task requests a system resource, an event control word
associated with the task is placed on the appropriate resource queue. The Task may have to wait until the
resource is available. When it is, the Supervisor notifies the task by posting. It is important to note that only
one task can be waiting on a particular event (as characterised by a particular ECW) at the one time. The
event is unique to the posting agency and the particular task waiting for the event.

1.2.14 Critical Sections
Another form of event synchronisation is required, which allows co-operating tasks to share certain
resources. The resources that can only be shared in this way are called 'critical sections'.

This property applies to a large number of facilities. Their common characteristic is that only one task may
use them at one time. One example is program segments whose execution must be completed once they are
started before another task may start them. These are serially re-usable programs. Another example is a table
of data common to two tasks and modified by both. Care must be taken that once a modification is started, it
is completed before another task picks up the modified value. If access to such a table is not made a critical
section and modification is not completed the unmodified value may be picked up in another task leading to
erroneous computation.

20

If the programmer wants to control access to such a facility, he may create a queue of all tasks requiring
access, and limit access to one task at a time. Such a control action is provided in the operating system by
two meta-instructions. LOWER and RAISE. These instructions operate on data items called
SEMAPHORES.

The operations LOWER and RAISE are equivalent to the 'P' and 'V' operations defined by Dijkstra5. The
mnemonic origin of the names 'P' and 'V’ is obscure and the author found it so difficult to use these names
that the names LOWER and RAISE were adopted. Since the origin of semaphores must have been taken
from the context of mechanical railway signals, which have the function of excluding more than one train
(task) from a critical section, the names LOWER and RAISE seem appropriate.

Dijkstra has thoroughly investigated the problems arising from access to common variables 5. This is a short
summary of the semaphore operations given by Wirth1.

It is postulated that LOWER and RAISE be the only operations applicable to variables designated as
semaphores. The observation of this postulate is crucial to the correct operation of tasks and may
only be disregarded during the initialisation phase of a task. The operation

RAISE(S)

increments the value of the semaphore S by 1. The operation

LOWER(S)

can only be performed when the value of S is positive; then it is decremented by 1. From this it
follows that LOWER may cause a delay of program execution until another task performs a RAISE
operation on the semaphore S. Thereby a synchronisation of the two tasks is obtained.

If semaphores are restricted to assume only the values 0 and 1, then the operators LOWER and RAISE
correspond respectively to the operators LOCK and UNLOCK described by Dennis and Van Horn14 , the TSL
instruction of Lampson6 or DEQ and ENQ in OS/3607.

A critical section in OSCAR is coded as follows:

<statements before critical section>

LOWER
<SEMAPHORE ADDRESS>

<tatements in the critical section>

RAISE
<SEMAPHORE ADDRESS>

<tatements after the critical section>

The semaphore used to create a critical section must be a binary semaphore. The use of the general
semaphore which may have other values apart from 0 and 1 is very powerful and an example may be found
in the implementation of Double Ended Queues. (Section 2.3.2).

Many of the latest systems such as the VENUS operating system13 (See also section 3.3) use semaphores for
jobs for which Event Control Words are really more suitable. In particular the logical power of Event Control
Words cannot be matched by Semaphores whereas the queueing action of semaphores is not available with
Event Control Words. The action of Event Control Words and Semaphores is sufficiently different so that the
inclusion of both in an operating system is justified. 0S/360 uses Event Control Words and Binary
Semaphores. This is the only other system which uses two sets of synchronising primitives.

21

2 REAL TIME OPERATING SYSTEM 'OSCAR'
OSCAR is a versatile multiprogramming system which extends the hardware of the NOVA family of
computers to give system programmers a flexible environment for implementing real time systems. OSCAR
is a highly modular system with a hierarchical structure which allows users to access the system at a number
of different levels. It is a fast system. Interrupt handling, task swapping and execution of the simple
synchronising primitive is carried out in an efficient manner. High speed systems may be built using only the
lower level functions. This requires more programming effort but has the advantage of producing very
compact and fast systems. Otherwise formatted output and buffering is available at the cost of a bigger and
slower system.

All functions are written as independent relocatable modules with global symbolic references. These are
provided on a relocatable library which is compatible with the Relocatable Loader or Linker. Only modules
which are required are actually loaded.

2.1 System Hierarchy
Levels of abstraction is a concept first described by Dijkstra2. A number of functions are loosely associated
with a level. The concept of a level allows the programmer to use a number of functions at one level without
being concerned about the operations at lower levels, This provides a way of thinking about a design which
is clear and precise3. Function modules at a higher level use functions at lower levels. If all functions are
specified in terms of the operations at a lower level and tested against these specifications, and if they are
used correctly in the higher level functions, their use in these functions need not be tested. They can be
assumed to be working correctly. This approach has made the testing of OSCAR very simple, because each
function is conceptually simple and need only be tested for the small number of cases the specification
allows for. If a function is more complex it is coded in terms of lower level functions which are tested
independently.

An example of functions at a given level which are well specified and whose correct operation is generally
accepted are the hardware operations executed by the central processor. These have been included in the
levels of abstraction which shows immediately that the hardware software boundary is quite flexible. For
instance floating point instructions are often implemented in hardware. The synchronising primitives in
OSCAR could be implemented in Hardware. The specification and writing of the software functions has
been carried out with the same care that would normally be exercised in designing a hardware facility. This is
desirable for two reasons.

1. The specification must be sound to achieve correct operation. The aim of providing these functions is
to give users the tools to design working systems.

2. The acceptance of a system such as OSCAR will be inversely proportional to the amount of software
maintenance it requires. There is also a heavy premium on reliable operation in real-time systems.

The OSCAR functions which have been implemented to date are listed here according to levels.

2.1.1 LEVEL 0
• The Hardware Instruction Set of the Processor

• The Floating Point Instruction Set

• The Peripheral Device Interfaces

22

The Instruction set of the Nova is used without modification. This system runs on all Nova families of
computers. The Software Floating Point package looks to the users at higher levels just like a second
processor except for execution speed. The design of Device Interfaces for special devices must often be
carried out by users and then the interpretation of I/O instructions for such devices depends on the design
chosen. Luckily the Nova has a standard Interface design and an I/O instruction set which allows the
implementation of uniform designs for a large variety of devices.

A Version of OSCAR for the PDP-8 family of computers has been partly written but not tested. The concepts
of the rest of the levels are machine independent.

2.1.2 LEVEL 1
• Interrupt Handler

• Task Scheduler

This is the Operating System Nucleus. Above this level the system can be thought of as a number of Virtual
processors, each having the facilities of the hardware CPU, its registers and a number of private memory
locations and the Floating Point processor as an option. Interrupts are transparent to Virtual processors, just
as Data Channel cycle stealing is transparent to the Hardware processor. There is as yet no means of
communicating between Virtual processors and external devices.

2.1.3 LEVEL 2
• .SVC Supervisor Call

• .EXIT Exit from a Supervisor Module

• .WAIT Wait for one event

• .MWAIT Wait for a number of events

• .POST Post the occurrence of an event in a task

• .POSTI Post the occurrence of an event in an interrupt handler

• LOWER Lower a semaphore

• RAISE Raise a semaphore

These functions are the means of communication between the User who has a virtual processor (Task) and
the Operating System Nucleus. The Supervisor Call allows access to System modules which are written as
Tasks at higher levels. The .SVC simply provides a function which sets up the linkage between these Tasks
and the User. Supervisor Task Modules have characteristics which are reminiscent of external devices. They
may be started by a .SVC and they will then execute as a parallel and independent task with a separate virtual
processor from the one making the call.

The other functions at this level implement the synchronising functions for Event Control Words and
Semaphores described previously.

2.1.4 LEVEL 3
• Device Interrupt Service Routines

• Device Drivers

• Re-entrant Supervisor Subroutines

23

• .DQIN Initialise Double Ended Queue (DEQ)

• .LPUT, .RPUT Put a cell on one end of a DEQ

• .LGET,.RGET GET a cell from one end of a DEQ

• .FREQ Compute the frequency of a pulsed signal

• FLS Re-entrant interrupt service for pulsed signals

• MPY, MPYØ Unsigned Multiply

• DVD Unsigned Divide

• TIM Read elapsed time in clock increments

• FLOM Read elapsed flow in flow meter increments

These functions provide a number of services which are frequently required. They rely heavily on Level 2
and lower functions. For different applications users may develop alternative routines which will operate at
this level.

Device Interrupt Service Routines and Device Drivers are usually written together. They bear a similar
relationship to each other as the Data Channel Hardware of a computer and the Central Processor. They share
common memory registers and their timing is interleaved in a predictable way. Device Drivers are part of the
virtual Processor environment. Whereas Device Interrupt Service routines are outside this environment. But
Virtual Processors may WAIT for events which are first identified in Device Interrupt Service routines.
.POSTI is used to post such events. This call may not be used in a task. Device Interrupt Service Routines
cannot be suspended and no calls which may have suspension as a result can be executed in them. Re-entrant
Supervisor subroutines may be called from any Task. The specification of a particular routine may require
the setting up of a special data area which is used by the subroutine. Such areas must be set up for each Task
using the subroutine.

2.1.5 LEVEL 4
Re-entrant Supervisor Programs:

• CELLO Buffered Cell Output Program

• CES Counted Events Scheduler

These are the program part of tasks which may be implemented by providing one or more task control blocks
which specify the starting point of one of these program as their initial starting point. Each task must also
provide a work area whose address is part of the initialisation constants for each task.

2.1.6 LEVEL 5
Supervisor Tasks:

• TTODQ Teletype buffered output task

• INODQ 2nd Teletype (Infoton) buffered output task

• DELAY (DELEX) Schedule an event a given number of real time clock increments in the
future. When the event occurs either POST it (DELAY)
or execute a subroutine (DELEX)

• FLOW (FLOX) Schedule an event a given number of flow meter pulses in the future.

24

Planned Supervisor tasks which have not yet been implemented are:

• OPEN Link a file or device to an input or output queue

• CLOSE Release a file or device from its queue

These are the actual tasks whose programs are provided at Level 4. The buffered output tasks are accessed by
users through Double ended queues, while the Event Schedulers are activated by a Supervisor Call.

2.1.7 LEVEL 6
Higher Level Language Interpreters

BASIC

This facility has not yet been implemented but much thought has been given to this extension of
OSCAR. The plan is to implement the BASIC language in this way and to extend its instruction set
to include the synchronising operations. Calls to assembly language routines will be included and all
Input/Output will be carried out via the appropriate OSCAR facilities. The interpreter will be written
to be re-entrant in the OSCAR environment. Interrupt service will be carried out at the appropriate
OSCAR level and user written Device Service Routines will be allowed. A BASIC Task will be
distinguished from other Tasks only by the fact that the Program Counter (PC) of that Task will be
pointing to the code of the BASIC Interpreter. A Task may change from BASIC to assembly
language programs simply by executing a call instruction.

To implement this facility a dynamic task structure with user defined priority would be appropriate.
The Editing and incremental compiling facility of BASIC would exist as one task with a given
priority. The RUN command would be extended to

'RUN <line number 1>, <line number 2>, <priority>'.

This would create a task which would start execution in the BASIC interpreter at line number 1 and
take its Data from the first DATA statement after line number 2. The Keyboard would still respond to
command input and a second Task could be started at the same line number or a different line
number by the extended RUN command. Also RUN could be used as a programmed command. This
would then be the same as the FORK instruction of Conway8.

One difficulty which must be overcome is the sharing of the console between the Editing Task and
the Running Task(s). This problem has been successfully solved in the implementation of Debug
Task which will be described later. The output to and the input from the console is transmitted in
lines via lower level function. In each Task a common semaphore ensures mutual exclusion of the
console. If a BASIC Task is running and printing some values, the programmer can break in on this
output by typing a special attention character - 'Escape' would be a logical choice. The Task will then
complete the current output which RAISES the common semaphore and then continues running. In
the meantime the BASIC Edit Task has obtained the console and Program modification may proceed.
The Running Task(s) will proceed until the next output statement to the console where the Task will
be suspended on the common semaphore. A suitable Proceed command or character will LOWER
the common semaphore and allow the suspended Task to proceed.

Sharing of the console between a number of running Tasks must be organised by the user. This will
bring out the full power as well as the difficulties of parallel processing.

25

A REAL TIME BASIC facility should provide a worthwhile extension of the computer for
implementing On-Line systems. Many of these systems are presently being implemented with
BASIC in its Uni programming form.

The same system could also be used as a multi-user BASIC facility if several consoles are available.
In this case a number of consoles call up BASIC from a system Monitor. Each console will
communicate with the Edit package of BASIC program which it has caused to run. Communication
between consoles via BASIC would be possible.

FORTRAN and ALGOL

Fortran and Algol compilers are available for the Nova family of computers. The job of re-writing
the Run-time Library to fit in a Task Structure would be quite large. Otherwise, there is no reason for
not incorporating the OSCAR functions in these languages.

PL/I

PL/I already has a parallel processing capability. This very similar to the OSCAR structure and
OSCAR could probably be adapted to implement the PL/I parallel operations. At present there is a
compiler for PL/I which produces object code for Nova's, but which must be run on a larger
computer.

2.1.8 LEVEL 7
The Keyboard Monitor

This facility has again not been implemented, but it forms a logical extension to the OSCAR system which
has been planned and which would extend the system in the direction of a general purpose computer facility
or time-sharing facility. This may sound ambitious, but the author feels that the functions of OSCAR are
powerful enough to allow the implementation of a very versatile Multi-programming Disk Operating
System, which could be accessed from a number of consoles. Currently such systems only allow Multi User
Basic from a number of consoles. At best a number of User written, interrupt driven assembly language
programs could be run in parallel with BASIC. There are no facilities on any mini-computer for
simultaneous time-shared usage of a Disk Operating System Monitor, the higher level language compilers,
the assembler and the text editor. Implementation of such a system would require the re-writing of all these
programs in re-entrant form which is a formidable obstacle. But the generous provision for private register in
OSCAR and the provision of tested synchronising facilities should make this job much easier than if the
planning of such a system were to be started from scratch.

The Disk Operating System (DOS) for the Nova family of computers has a very good Keyboard Monitor
which allows simple yet effective communication between the Operator and the System. This system has a
number of implementation weaknesses which can be sheeted home to the lack of synchronising operations.
The routines which fill and empty buffers on the interface between programs and interrupt service routines
fail if a device empties a buffer too quickly. This was experienced when a fast Line Printer with a 132
character hardware buffer was installed. The sequence of characters in the output became mixed up because
of lack of communication between the interrupt handler which emptied the buffer and the device driver
which output the remaining characters.

Such a system would be very sought after for medium sized time sharing systems. Implementation would
probably be difficult without some form of hardware protection. Without it system integrity could not be
guaranteed to users if other users ran their own assembly language programs. Such a system would also
benefit greatly from memory paging hardware. This would allow the implementation of a virtual memory
structure. The present memory allocation and protection hardware for the Novas would do the job, and the

26

Nova on which the OSCAR system was implemented has this facility. So far it has not been used because the
computers for which real-time control systems were developed are without this extra hardware.

2.2 Interrupt Handler
Interrupts on the Nova store the Program Counter in Location 0, turn interrupt off and jump to the interrupt
handler whose address must be at location 1. The OSCAR interrupt handler only saves Accumulator 3 in the
first word of the currently active TCB. In another 2 instructions the device code is determined and a transfer
is made to a device interrupt service routine via a transfer. table on page zero. This transfer table must be set
up by the user. All devices which can possibly interrupt must be represented on this table. Devices which are
not required may point to a dummy device service routine which clears the offending DONE flag and returns
from interrupt. A typical Device Service Table is shown in the listing in the Appendix under the title TS1.
TS1 also defines a number of page zero constants and address pointers. These should-be retained.

2.2.1 Return from Interrupt
This 3 statement program is the symmetrical dual of the Interrupt Handler. It is entered from a Device
Service Routine, restores Accumulator 3, turns interrupt on and jumps via location 0 to the interrupted
program. The concept of symmetry has been used a great deal in coding OSCAR. Figure 13 which is a
flowchart of the Task Scheduler and Interrupt handler shows how this symmetry fulfils the basic
requirements of the problem of context switching.

2.2.2 Task Scheduler
The Task scheduler has a number of entry points. These are only entered from other system modules, never
by users. The Scheduler saves two registers in the current active TCB and then carries out a scan of the Task
queue for the highest priority ready task. The structure of the task queue allows a fast scan to determine the
highest priority task quickly. Each task queue entry contains the TCB address in bits 1 to 15 and a Ready-'bit
in bit 0. If the Ready-bit is 1 the task is suspended, if the Ready-bit is 0 the task is ready and may be made
active. In the task scan the first entry where the Ready-bit is 0 is made active. This is done by saving all
relevant register of the current task in its TCB, and then setting up the registers of the TCB whose address
has been found in the task queue.

27

A test is carried out to check that the current active task is not the highest priority task found in the task
queue. If it is, time is saved by bypassing most of the task swapping code and simply restoring those registers
which had already been saved. Again symmetry was exploited to do this. For more details see listing of
program TS2 in the Appendix.

2.3 OSCAR Meta-Instructions
Communication between user programs and OSCAR is carried out through 'meta instructions' which are
subroutine calls followed by parameters. Because of the lack of a macro-assembler, these meta-instructions
are declared in their library modules as entry points (.ENT) and they must be declared as externals (.EXTN)
in user modules. Although most of the meta-instructions are subroutine calls, they have been equivalenced to
a single word usually beginning with a full-stop.

e.g. .ENT .WAIT
.WAIT = JSR @ WAIT

2.3.1 Address Parameters
Parameters of OSCAR meta-instructions are frequently addresses or pointers to a certain memory location.
In most instances the convention has been adopted that if bit 0 of the address parameter is zero the address
defined by bits 1 to 15 is the required pointer. If on the other hand, bit 0 is a one the indirect convention of
the Nova computer applies and bit 1 to 15 defines the address in which the pointer is to be found. Usually
this indirect chain is emulated indefinitely until a zero is found in a bit 0. In one instance this does not apply
(See note in DELAY call). Care must also be taken if auto-increment or decrement registers are used as
indirect addresses. Since these indirect chains are usually emulated by software, no auto-indexing takes
place. In some instances the auto-indexing will apply and the rules of each routine must be strictly observed.
This problem can be serious in OSCAR because half the 'private' registers are auto-indexing. These make it
possible to use the system meta-instructions re-entrantly. If the indirect feature applies to a particular
parameter this is indicated in the calling sequence.

2.3.2 Supervisor Call
.SVC
<Supervisor Module Name>
<Other Parameters>
<Next Statement>

This is a linkage operation which causes scheduling of Supervisor Modules which are independent tasks
rather than subroutines. The Supervisor Module Name is declared as an entry point in the module and is the
address of the TCB for the task. Some supervisor modules have dual functions in which case bit 0 of the
Supervisor Module Name is used to mark the second function. Users do not have to worry about this. Two
separate names are declared in the Module in such cases. The other parameters depend on the individual
supervisor module called. Details are found in the calling sequence of each module.

The action of the .SVC is analogous to the JSR operation except they provide a call from one task to another
task, rather than from one program to another program. In the spirit of this, the main calling parameter is a
TCB address, and the action of the .SVC is to make this task active. The .SVC call also stores the TCB
address of the calling task in AC3 of the called task. This allows the supervisor module full access to all the
accumulators and private registers of the calling task at the instant it made the call. Since the .SVC is initially
also a Jump to Subroutine the value of AC3 in the calling task is a pointer to the word after the .SVC. Thus
the called task has access to all the parameters following the .SVC call just like any other subroutine.

28

NOTE :The task priority of the supervisor module must be higher than the priority of the calling task.
Otherwise the calling task will continue execution before the supervisor module, which is not intended. For
this reason the 5 highest priority task names TCBA-TCBE have been reserved for supervisor use.

The .SVC details are only important if users write their own task modules which are to be accessed by the
.SVC call. Also the EXIT call should never be used except in such a module.

2.3.3 Exit from Supervisor
.EXIT
<NEXT STATEMENT>

This call suspends a task unconditionally. The effect is to schedule the next ready task. This is usually the
task which previously made the .SVC call to the module containing the .EXIT. It thus constitutes a return
from the supervisor module to the next statement after the Supervisor call in the task which made the call.
Data may have been passed through the calling tasks TCB or common locations. The latter mode is not re-
entrant whereas the former is. The statement after the .EXIT call is the statement executed when the
supervisor module is next activated by a .SVC. Thus the .SVC-.EXIT mechanism may also be used to
implement co-routines.

2.3.4 Post an Event
.POST
<ECW ADDRESS> or .@<POINTER TO ECW ADDRESS>
<NEXT STATEMENT>

.POSTE ; ACO CONTAINS 15 BIT MESSAGE
<ECW ADDRESS> or @<POINTER TO ECW ADDRESS>
<NEXT STATEMENT>

.POSTI ; USE ONLY IN INTERRUPT SERVICE
<ECW ADDRESS> or @<POINTER TO ECW ADDRESS>

The execution of .POST or its companion instructions .POSTE or .POSTI marks the occurrence of a
particular event in real time. The only parameter is the address of an Event Control Word or a pointer to such
an address. The Event Control Word, which must be used as the parameter in a WAIT operation in another
task to establish a communication is tested and modified by the POST operation. Because Interrupts are
disabled this becomes an indivisible operation in the task environment.

All POST operations set bit 0 of the ECW which is the completion bit. Additionally .POST and .POSTI clear
bit 1-15 of the ECW. .POSTE is used to also transmit a 15 bit message to the task waiting for the event
(usually an error message). For this purpose bits 1-15 in ACO are stored in bit 1-15 of the ECW.

If bit 1-15 of the ECW were non-zero before modification these bits contain the address of the TCB of the
task waiting for this event. This TCB has a one word register called the Wait Count register whose arithmetic
value is the number of events the task is waiting for before coming to the Ready state. If a task is waiting for
the event, the Wait count in its TCB is decremented and if it becomes zero, the task is taken from the
Suspended to the Ready state and the task scheduler is entered. If the task is not waiting for an event or the
Wait Count did not become zero, a normal subroutine return is made in the case of .POST or .POSTE. These
two meta-instructions must always be used in a program which is executed on behalf of a task. The meta-
instruction .POSTI must always be used in an Interrupt Service Routine while Interrupt is disabled. .POSTI
returns control to the task which was interrupted by the device whose service routine contains the .POSTI
call. This return may be delayed if the execution of .POSTI caused a higher priority task than the one

29

interrupted to be made Ready. In this case the task scheduler will schedule this new task first and the
interrupted task will be re-scheduled later.

A similar sequence applies in the case of .POST or .POSTE. In this case if the execution of these meta-
instructions causes scheduling of a higher priority task than the one making the call .POST or .POSTE, then
return to the calling task is delayed until the higher priority task suspends itself.

Multiple posting through the same ECW is allowed. Only the first posting has any effect, all subsequent
postings are ignored. This means that if no task is waiting for an event that event can still occur a number of
times without any ill effect. It is possible to re-write the .POSTE routine to transmit the message in ACO
from the last posting rather than the first. In any case it is sometimes convenient to write a special POST
macro as in-line code for maximum speed. This has been done in the DELAY module (see Listing in the
Appendix).

2.3.5 Wait for a Single ' Event
.WAIT
<ECW ADDRESS> or @<POINTER TO ECW ADDRESS>
SUBC 3,3
STA 3,@.-'2
<NEXT STATEMENT>

This meta-instruction is one implementation of the WAIT operation. It suspends a task if some event which a
task wants to wait for at this point in its sequence has not yet occurred. This is equivalent to saying that the
ECW which is a parameter of the .WAIT meta-instruction has not yet been posted. The Wait operation tests
and modifies the Event Control Word as an indivisible operation as did the Post operation. If the completion
bit (bit 0) is already set (the ECW has already been posted) the next statement is executed immediately. If the
completion bit is not set, the Wait Count in the TCB of the current task is set to +1 (waiting for one event)
and the address of the TCB of the current task is stored in bit 1-15 of the ECW. Bit 0 is left cleared.

Also the Ready bit in the Task Queue entry for the current task is set to one. This puts the current task in the
suspended state. The task scheduler is then entered to schedule the next task.

After the .WAIT call the Event Control word must be cleared before execution of the operation which will
initiate the next event which finally posts the ECW. It is a good practice to do it immediately after the .WAIT
call and therefore a clearing sequence has been included in the calling sequence.

Event Control Words must also be cleared during the initialisation phase of a task. Otherwise re-starting of a
system is impossible. Sometimes it is advantageous to set the completion bit initially. This avoids initiating
the operation which posts the event during initialisation.

2.3.6 Wait for Multiple Events
.MWAIT
<ADDRESS OF ECW1> or @<......>
<ADDRESS OF ECW2> or @<......>
<ADDRESS OF ECWn> or @<......>
-<m>
SUBC 3,3
STA 3,@.-<n>-2 ; CLEAR ECW1
STA 3,@.-<n>-2 ; CLEAR ECW2

30

STA 3,@.-<n>-2 ; CLEAR ECWn
<NEXT STATEMENT>

This meta-instructions endows the Wait operation with a certain amount of logical power. It is to be
interpreted as:

"Wait for m out of the n. events listed".

The logic used is commonly known as majority logic. Two special cases exist which are most frequently
used:

• A .MWAIT call with m=n.

This produces a logical AND. It is interpreted as:

"Suspend the current task unless or until all the events listed have occurred".

• A .MWAIT call with m=1.

This produces a logical OR. It is interpreted as:

"Suspend the current task unless or until one of the events listed has occurred".

The .MWAIT operation is not as efficient as the .WAIT operation for the special case of waiting for one
event. On the other hand the logical AND of a number of events can be implemented by a sequence of
.WAIT calls. This is not as efficient in space or in speed as the equivalent .MWAIT call. The logical OR case
can only be implemented by the .MWAIT call.

After the .MWAIT call Event Control Words must be cleared before any other call is made which may
involve suspension. There is an additional reason in the .MWAIT case. Some of the ECW's which have not
yet been posted will contain the TCB address of the current task. If another WAIT operation is carried out on
a different ECW, posting of the previously uncleared ECW may cause resumption of the task. Thus the
wrong event would make the task Ready. Such a Wait operation may occur in a subroutine. Therefore such
subroutines are included in the category of calls which may cause suspension. Therefore a clearing program
has been written into the calling sequence. In the case of the .MWAIT call implementing the OR case it is
frequently required that a test is made of which of the possible events has caused resumption of the task. This
test must be made before the ECW's are cleared. The clearing program must then be modified but must not
be forgotten.

Caution 1: m should not be greater than n, the number of ECW addresses. If it is, the task will be

permanently suspended.

Caution 2: m should never be greater than 63. If it is it will be interpreted as an address pointer with

unpredictable results.

Caution 3: if pointers are used to indirect addresses using the indirect conventions these pointers
should never have addresses which are greater than 215 - 64. If they are they will be

interpreted as -m. This is not difficult since this is the region reserved for the binary

loader in a 32K Nova computer.

31

2.3.7 Semaphores
Semaphores must be defined as a 2 Word Block.

e.g. SEM1:.BLK 2

The first word is the Semaphore Counter. The second word is the Semaphore link. It contains zero when no
task is suspended on the semaphore or the TCB address of the first task suspended on the semaphore. During
task initialisation semaphores must be initialised correctly. They must be initialised in the highest priority
task using the semaphore. The Semaphore Counter should contain the number of LOWER operations which
are to be allowed before the Semaphore suspends a task. This value is 1 for a Binary Semaphore, which is
initially raised. The value is 0 for a Semaphore which is initially lowered. The Semaphore Counter should
never be initialised to a negative value. The Semaphore Link should always be initialised to zero.

Apart from initialisation, Semaphores should only be operated on by the operations LOWER and RAISE.
These are indivisible operations which work across task boundaries. Any other sort of test on the value of the
Semaphore Counter may no longer be valid by the time the test results become known.

2.3.8 Lower a Semaphore
LOWER
<ADDRESS OF SEN.> or @<POINTER.....1>
<NEXT STATEMENT>

The Semaphore counter is decremented. If the counter is then positive or zero the next statement is executed
immediately. Otherwise the current task is suspended until a RAISE operation on the same Semaphore
makes the task Ready. When the task is suspended its TCB address is stored in the Semaphore link or in the
Word Count register of the last TCB in a chain of TCB's if this was not the first task suspended on the
particular Semaphore.

2.3.9 Raise a Semaphore
RAISE
<ADDRESS OF SEN.> or @<POINTER.....1>
<NEXT STATEMENT>

The Semaphore Counter is incremented. If the counter is then positive (not zero) the next statement is
executed immediately. Otherwise a task chained to the Semaphore link is made Ready and the task scheduler
is entered. Which task is executed next depends on the priority of the task which has just been made Ready.

Tasks are made Ready by RAISE operations in the order in which they were suspended. Thus no task can be
suspended indefinitely at the expense of other tasks.

2.4 Simple Drivers and Interrupt Handlers
.GET
<NEXT STATEMENT>

Get a character from the Teletype Keyboard in ACØ. The Event Control word used is TTIEC.

.READ
<NEXT STATEMENT>

1 Do not use Auto-Indexing Registers for Pointers.

32

Get a character from the High Speed Paper Tape Reader. The Event Control Word used is PTREC.

.PUT
<NEXT STATEMENT>

Print a character passed in ACØ on the Teletype. The Event Control Word used is TTOE1.

.PUNCH
<NEXT STATEMENT>

Punch a character passed in ACØ on the High Speed Paper Tape Punch. The Event Control Word used is
PTPE1.

These routines are all similar in structure. An interrupt from any of these devices will clear its flag and POST
the Event Control Word mentioned. The Drivers WAIT on this Event Control Word on entry and then get or
put the character on the device before returning.

2.4.1 Teletype Driver and Interrupt Handler
This Teletype Driver emulates a device with many more capabilities than the actual Teletype.

JSR @PUTB or JSR @PUTBI
<MAX NO OF BYTES IN BUFFER>
<NEXT STATEMENT>

AC2 must contain the word address of the first byte in the buffer

The input is passed to the driver as a byte string which must be stored in a buffer whose address is passed to
the driver in AC2. This allows the routine to be used in re-entrant situations. The driver is not itself re-
entrant, but its address may be stored in a private register and a re-entrant program may be shared by several
tasks each of which communicate with a different driver. This is frequently required for Teletypes used as
terminals.

The maximum number of bytes in the buffer is included in the call as a safety feature to prevent printout of
characters which are not in the buffer. Normally a string is terminated by a null byte. The routine could easily
be modified to also terminate a string by a Carriage Return or a Form Feed.

The following special character functions have been implemented.

ASCII CODE ACTION

000 MARK LAST BYTE OF A STRING

001 INSERT CRLF

002 INSERT CRLF

004 SUBSTITUTE FOR TAB

005 ENQ' SUBSTITUTE FOR FORM FEED

010 CR ONLY

011 TAB TO THE NEXT COLUMN OF 8

012 LINE-FEED (THE FIRST LF AFTER CR IS IGNORED)

33

ASCII CODE ACTION

014 FORM-FEED (COMPLETE THE CURRENT PAGE)

015 CARRIAGE-RETURN (INSERT LF)

017 SUBSTITUTE ‘)’

031 SUBSTITUTE SPACE

032 SUBSTITUTE ‘←’

034 SUBSTITUTE ‘↑’

035 SUBSTITUTE LF

037 SUBSTITUTE ‘(‘

177 RUB-OUT (IGNORED)

Any other control codes are not transmitted.

The Constants are correct for an Olivetti Terminal Type 308, adjusted for 80 Character lines. The page length
is 60 lines with 6 extra lines to complete an 11" page.

To obtain a consistent page format all output to the Teletype must be channelled through this driver.

The driver when called by 'JSR @PUTB' returns to the calling program when the last character has been
transmitted to the Teletype. This is 100 ms before the completion of printing of the last character which is the
time when the buffer becomes free. Another call 'JSR @PUTB' may be made immediately because the first
thing the driver does is wait for the completion of printing of the last character. Thus 100 ms are available to
generate another buffer while maintaining the Teletype at its maximum speed. If this is not enough the driver
may be called by 'JSR @PUTBI'. In this case the next statement is executed immediately the first character
has been transmitted. Output and further computation may then proceed in parallel. Care must be taken not to
disturb the buffer. To synchronise with the transmission of the last character wait for the event control word
'TTOE2' which is a global symbol.

2.4.2 Drivers and Interrupt Handlers for other Terminals
A Driver for an Infoton display and Keyboard has been written.

JSR @INDB or JSR @INDBI
<MAX NO. OF BYTES IN BUFFER>
<NEXT STATEMENT>

AC2 must contain the word address of the first byte in the buffer

This is very similar to the Teletype Driver. The only difference is that it emulates a few extra character
functions which are peculiar to a display.

ASCII CODE ACTION

000 MARK LAST BYTE OF A STRING

34

ASCII CODE ACTION

001 SAVE THE POSITION OF THE CURSOR

002 RESTORE THE CURSOR TO THE POSITION LAST SAVED

010 HOME THE CURSOR WITHOUT ERASING

011 TAB TO THE NEXT COLUMN OF 8

012 LINE-FEED (THE FIRST LF AFTER CR IS IGNORED)

014 ERASE SCREEN AND HOME CURSOR

015 CARRIAGE-RETURN

017 BLINK-OFF

031 CURSOR RIGHT

032 CURSOR LEFT

034 CURSOR UP

035 CURSOR DOWN

037 BLINK-ON

177 RUB-OUT (ERASE CHAR. ON THE LEFT)

Any other Control Codes are not transmitted.

The Constants are correct for an Infoton Display with 20 lines, 64 characters per line and set to 'Roll' mode.
A Cursor Count is maintained which follows the actual Cursor on the screen. The Cursor save and restore
feature make use of this count.

2.4.3 Data Communications Multiplexor Driver
The Asynchronous Data Communication Multiplexor (DCM) type 4026 for the NOVA can control the
transmission of asynchronous serial data on 16 output lines and can receive asynchronous serial data
simultaneously over 16 input lines. The device requires periodic changes in the contents of a 16 bit output
register in which each bit is connected to a separate output channel. Thus successive changes in the register
contents produce bit-by-bit serial transmission over the channels. Data is received by periodically sampling
the 16 input lines to pick up the bit-by-bit serial input. The sampling rate must be greater than the bit rate to
allow for degradation of the signal. Satisfactory operation is achieved by sampling the input 5 times per bit
time. With such a scheme a transient that in less than 3 sample times is not mistaken for a start pulse.

Because the sampling rate is 550 Hz for 110 Baud Teletypes a driver for such a device can easily use up an
untoward amount of computer time. The Data Communications Multiplexor Handler program which is
supplied by the manufacturers executes 343 instructions for every sampling interrupt. This means a 39%
occupancy on a Nova computer. The Drivers and Interrupt Handler written to run under OSCAR can handle
each sample interrupt in an average of 35 instructions. This lowers the occupancy to 4% for 16 terminals

35

which is 0.25% per terminal. These figures are 3 to 5 times better for both handlers with the new range of
Nova computers. Manufacture of this piece of hardware has ceased, probably because of the high occupancy
associated with the standard handlers. The device has been replaced by a similar device which assembles full
8 bit characters by hardware.

The rest of this description should apply to both types of multiplexors.

There are 32 drivers one for each input line and one for each output line. Only those drivers which are
actually required in an installation need be loaded. The DCM Interrupt handler posts an ECW associated
with an input line each time a character from that line has been assembled. It posts another ECW associated
with an output line each time a character has been transmitted on that line.

Each of the drivers wait for the particular ECW which is posted in the Interrupt Handler and then picks up
the character from a one word Buffer for input or stores the character in a one word buffer for output. This is
the simplest sort of driver, and to users its operation is identical to the driver for a conventional Teletype
interface as in Section 2.4. User systems would probably be structured to be one task for a pair of drivers.

FIG. 14 DCM Interrupt Handler and Drivers

This approach contrasts strongly with the DCM Handler supplied with the machine. It has its own interrupt
handler, and this is virtually the master program. Each time a character is built up it does a 'JSR' to a user
supplied subroutine which must accept this character (or supply one in the case of printing). The user
program is only allowed 1000 instructions times to do this. Otherwise the sequence will go astray. In other
words the User program is a subroutine to the DCM handler. Contrast this with OSCAR where all functions
are subroutines to the User. The worst that can happen if User programs are too slow is that a device driver
may post more quickly than a task can accept events. In this case characters would be lost. But this is no
different to operation of a single Teletype without interrupt. If a program cannot get around the loop in 100

36

ms characters will also be lost. Thus programs which run in conventional single terminal mode will run
exactly the same under OSCAR through the DCM Driver.

More complex drivers along the lines of section could be written for this device. The Interrupt Handler
would not be changed. It would be appropriate to write the driver re-entrantly.

2.5 Double Ended Queues
Dynamic buffering is carried out in OSCAR by the common list structure called Double Ended Queues.
These are more useful than Single Queues because they may be accessed at both ends. Each Double Ended
Queue (DEQ) consists of a control block and a variable number of cells. The number of cells may be zero in
which case the DEQ is an empty DEQ. Each cell consists of two link words and a fixed number of words of
storage which may be used as buffers. The address of a cell is the address of the first word of buffer storage.
The Link words have a displacement of -1 and -2 with respect to the cell address. The Link words may be
used as temporary storage registers while the cell is not on a DEQ. Once a cell has been put on a queue the
Link Words will be overwritten.

The first two words of the Control Block (DQCB) and the two link words in each cell in the queue together
form a circular linked list. The first word “L” points to the cell on the left. The second word "R" points to the
cell on the right. The link words in the Control Block close the circle. Since the address of the Control Block
is known, routines using the Control Block address as a parameter can manipulate cells immediately to the
left and right of the control block.

DEQ's are operated on by five routines one to initialise a DEQ, two to get cells from the queue and two to
put cells on the queue.

2.5.1 DEQ Initialisation Routine
.DQINI
<DQCB ADDRESS> or @<POINTER TO......> ; D
<CELL BYTE LENGTH> or @<POINTER TO> ; L
<NUMBER OF CELLS> or @<POINTER TO......> ; N
<ADDRESS OF FIRST CELL> of @<POINTER TO......> ; S
<NEXT STATEMENT>

This routine initialises a DEQ Control Block and a set of cells. This is usually done in the initialisation phase
of a task. Even if a DEQ is to be initially empty it is necessary to re-write the appropriate pointers when a
system is re-started. As a general rule DEQ's are set up to be initially empty because they represent buffers
for various facilities which are empty to start with. Only one DEQ is set up with cells and this is a source of
cells for the system. This DEQ is set up by OSCAR and its DQCB has the label FREE which is defined as a
global symbol. The number of cells (NC) and the cell length in bytes(CL) must be defined in TS1 which is
normally assembled by users to set up their configuration of OSCAR. The labels NC and CL are entered as
global symbols in TS1. If cells are going to be taken from FREE then the global symbol CL should be used
as the 3rd parameter in .DQINI and as parameter of the calls 'JSR @ PUTB' and 'JSR @ INDB' discussed in
Section 2.4.1 and 2.4.2

Different length cells can be handled by these routines in the one system, but only cells of the one length
may be taken from or put on a particular DEQ. Since cells are normally taken from the FREE DEQ and put
on a buffer DEQ and then put back on FREE, these must all have the same length cells.

NOTE 1: Cell length (L) must be specified in bytes in the 2nd parameter of the .DQINI call. It will be

used to store the number of words in a cell in the last word of the DEQ Control Block. This

37

constant does not include the two link words. Thus the actual space taken up by a cell is
(L + 5)/2. This allows for the extra byte which is actually provided if L is odd.

NOTE 2 : The number of cells specified (N) is also the maximum number of cells allowed on the

DEQ. If the address of the first cell (S) has the value '0', the DEQ is initialised to be empty, and

'N' is used only to set the maximum number of cells on the DEQ.

NOTE 3 : The amount of storage which must be set aside for cells may be computed as follows. If 'N' is

the number of cells specified, 'S' is the address of the first cell and 'L' the byte length then the

locations used go from

S to S + (N * ((L+5)/2) - 1)

The FREE DEQ which is set up by OSCAR is started at the first free memory location after
OSCAR is loaded. Thus the OSCAR Library must be the last module during the relocatable
linking or loading operation. Having predefined L = CL and N = NC in TS1 the last location

used by the FREE DEQ will be

LAST = NREL + (NC * ((CL+5)/2) - 1)

Care must be taken that this does not interfere with the binary loader or at least does not
reach past the available memory.

NOTE 4 : Even if a DEQ is to be initially empty it should be initialised with the .DQINI call so that the
DEQ Control Block pointers are restored and the semaphores are reset when re-starting the
system.

2.5.2 Get a Cell from a DEQ
.LGET or .RGET
<DEQCB ADDRESS> or @<POINTER......2>
<NEXT STATEMENT>

.LGET and .RGET will obtain the address of a cell from either the left or right of the DEQCB specified. The
address of the cell is returned in AC2. The DEQ is re-linked to exclude the cell which has been taken out. A
semaphore in the Control Block is LOWERed which counts the number of available cells in the DEQ and if
an attempt is made to get a cell when the DEQ is empty, the task making the call is suspended. The task is re-
activated when another task puts a cell on the DEQ which RAISEs the semaphore. That cell is then
immediately available for the .LGET or .RGET call.

A second semaphore counts the number of cell spaces still available before reading the maximum number.
This semaphore is RAISEd by .LGET or .RGET because these calls make another cell space on the DEQ
available.

.LGET and .RGET also store the address of the cell returned in AC2 less 1 in private location 20. Thus
location 20 can be used as an auto-incrementing pointer to the words in the cell. The word length of the cell
is returned by both routines in location 30. The operation 'DSZ 30' can thus be used as a loop count when
accessing words in the cell.

2 Auto-indexing registers may be used, they will not auto-index.

38

2.5.3 Put a Cell on a DEQ
.LPUT or .RPUT
<DEQCB ADDRESS> or @<POINTER......2>
<NEXT ADDRESS>

.LPUT and .RPUT insert cells into a DEQ. The address of the cell must be passed to a PUT routine in AC2.
Since cells are usually taken from another DEQ with a GET operation which provides the address in AC2,
the two operations are compatible. The new cell is linked into the DEQ on the side specified. The cell
counting semaphore is RAISEd and if a task had previously been suspended because it tried to get a cell
from where there were none it will now be re-activated. The second semaphore is LOWERed and if the
present cell would make the number of cells on the queue exceed the maximum number specified at
initialisation, the task making the PUT call will be suspended until a cell is taken from the DEQ by another
task. This mechanism prevents all the cells from the FREE DEQ being taken by one task and put on one
DEQ. This would prevent other tasks from getting cells.

2.6 Elapsed Time
. TIM
<NEXT STATEMENT>

A double precision counter is maintained by OSCAR. This counter is incremented every tick of the Real
Time CLOCK. Because the interrupt service for each clock tick is only 20µs at most, a clock frequency of
1KHz is handled comfortably and the system is initialised to this value. If a different speed is required the
value of RTCSP in program DELAY must be altered. If 16 bit accuracy only is required, the low order word
TIME may be loaded directly. This word is on page zero and is entered as a global symbol. TIML should not
be modified. If double precision is required the call .TIM will return the double precision time in ACO, AC1.
This call should not be carried out when Interrupt is off.

If the time has been taken at two different points in a sequence the difference, either single or double
precision will give the elapsed time between the two points in the sequence as long as the elapsed time does
not exceed 216 or 232 respectively. A simple unsigned single precision or double precision subtraction is all
that is required to obtain this difference.

This works even if the absolute value of the time for the first event is greater than the absolute time of the
2nd event. In this case overflow of the clock counter has occurred between the two events. Two's
complement subtraction allows for this case.

2.7 Event Scheduling
Certain system resources may be required by more than one task. In this case queuing facilities must be
provided with the routine servicing such a resource. Examples which come to mind are Read and Write
requests from random access devices. These have been coded for OSCAR on an experimental basis but have
not yet been incorporated in the system. A resource which is fundamental to real-time system and which has
been provided with a queued service routine is the Real Time Clock. This routine may also be used by other
devices which interrupt a computer at regular intervals and these interrupts mark the completion of a
quantum of some physical measure. Devices which come to mind are displacement measuring equipment
and liquid flow meters. Routines for the latter have actually been implemented for a liquid blending system
described in Section 1.1.2.

39

To allow for this diversity of similar devices a re-entrant set of routines was written. Each physical device
uses separate tasks to implement event scheduling for itself. The re-entrant programs have been called the
Counted Events Scheduler. The action of this general program will be described by the particular
implementation for the Real Time Clock. Implementations for other devices should be done after consulting
the listing of the assembly DELAY which contains the Interrupt Service routine for the Real Time Clock and
the Task Control Blocks for the associated tasks.

2.7.1 Time Scheduling
Enter an Event into the timed event queue.

.SVC
DELAY
<ECW ADDRESS> or @<POINTER......>
<DELAY> or @<ADDRESS CONTAINING DELAY>
<NEXT STATEMENT>

Timing starts immediately the call is made. <DELAY> must be given as an integral number of clock ticks
from the time the call is made.

Any task including the one making the call (but only one) can wait on the completion of the delay which is
accompanied by posting of the ECW whose address is passed in the call.

NOTE 1: If this call is repeated for the same ECW, the previous queue entry is deleted and the
event will not be posted. Only the latest entry will be posted when the number of time ticks in
the <DELAY> parameter have elapsed.

NOTE 2 : For both types of call the <DELAY> must be less than 215 clock ticks if given directly in the call

or less than 216 clock ticks if pointed to by an address in the call.

NOTE 3 : The indirect chain for <DELAY> proceeds only 1 level whereas the chain for ECW addresses or

subroutine addresses proceeds as long as @'s are encountered.

Enter a request for 'delayed execution' of a subroutine.

.SVC
DELEX
<ENTRY ADDRESS OF SUBROUTINE> or @<POINTER......>
<DELAY> or @<ADDRESS CONTAINING DELAY>
<NEXT STATEMENT>

This is an alternative of the first call which does not involve posting after completion of the delay. The
request is entered into the timed event queue and control returns to the next statement immediately. When the
delay time has expired the subroutine, whose entry point address is stored in the queue is executed at high
priority by the supervisor.

NOTE 4: All entries for subroutine execution. are retained and finally executed even if other requests for
the same subroutine are made before the first has occurred.

NOTE 2 & 3 of the previous section also apply.

Since the subroutines requested are executed by the supervisor at high priority these subroutines must satisfy
a number of conditions. Otherwise the supervisor functioning will be impaired.

1. Routines should be as fast as possible.

40

2. Routines should contain no calls which could result in suspension.

3. All accumulators (including AC3) carry and private locations 6, 20 and 30 may be modified. Private
locations 7, 21, 31, 40 and 41 must be preserved. Location 40 will contain the return point in the
supervisor. Thus the return to the supervisor is 'JMP @40'.

A typical use for the delayed execution facility is the outputting of a digital signal at a certain point in time.
Such a single instruction action would not warrant the setting up of a whole task.

2.8 DEBUG TASK
This is a task which may be linked in with OSCAR systems to provide an on-line debugging facility. It uses
the Teletype for input and output. If the Teletype is also required by other tasks the semaphore SENDT
defined in DEBUG TASK provides mutual exclusion of the Teletype as a facility in different tasks. Unless
output is taking place through the Teletype in another task, the Teletype keyboard is always receptive to
DEBUG TASK commands. These follow the standard pattern of Nova Debug programs. Any memory
location may be inspected and/or modified. A sequence of memory locations may be searched for a particular
word after it is masked. This operation also allows listing of a sequence of memory locations. A Breakpoint
may be entered at any memory location. Since DEBUG TASK is always active with other tasks this may be
done even when the system has been set running. When the Breakpoint instruction is executed the task mode
of operation is frozen and DEBUG TASK is run as a stand-alone program. This means that the instantaneous
description of all other tasks which includes all variables and also private registers in TCB's may be
inspected and modified. Because of the logical processor concept of task this scheme makes debugging of
real-time systems very tractable. The task mode may be resumed with the 'proceed' operation of DEBUG
TASK.

This dual mode of DEBUG TASK makes it a very powerful debugging tool. To the user the action of most
operations look the same, whether DEBUG TASK is in task mode or at a breakpoint. The inspection of
variables while a system is running is particularly useful. For example, the register which stores the value
from an A/D converter may be monitored at any time without first stopping at a breakpoint. This is important
when a system is controlling a factory process. It is then undesirable to stop the system. DEBUG TASK
allows effective debugging even in this situation. The following is a case study of a typical debugging
session.

By observation of the behaviour of certain variables and by inspection of the program listing it was
determined that a control algorithm was faulty. This became evident because one control loop in a system
containing a number of control loops was unstable. The system was running on line and the unstable
behaviour was not severe enough to warrant a shutdown. A modification to the control algorithm program
was written and checked on paper to make reasonably sure that it would work. Then the modification was
entered into a spare section of the computer memory as a patch. The memory modifying function of DEBUG
TASK was used for this purpose. The whole patch was typed in and checked while the rest of the system
operated with the old algorithm.

Then a statement in the control algorithm was overwritten with a branch instruction to the patch. The next
execution of that algorithm then executed the patch. The effect of the patch may then be observed. If the
action of the patch makes the system worse the branch instruction is again overwritten with the old
instruction. This restores the old algorithm. If the patch causes wild operation then the system will of course
crash. But this kind of modification was carried out repeatedly on an on-line system and very few mistakes
were made. The final operation if a patch is successful is to list it and also to punch out a binary tape of the
patch. This may again be done while the rest of the system is on-line.

41

2.9 Applications of OSCAR
Two major systems have been designed and implemented with OSCAR. One is a mineral processing
application the other is in the continuous production process category.

2.9.1 Ore Sorter
This is a machine developed at the C.S.R. Research Laboratories for the sorting of minerals. Pieces of ore
which are in a given size range are passed through the machine in single file. Two sensors and one activator
are mounted adjacent to the rock stream. These units are inputs to and output from the computer controlling
the whole operation. The first sensor detects the presence of a rock and also measures its outline. A task is
activated by every change in outline detected by this sensor called the position detector.

This task called the OUTLINE ANALYSER assigns sections of the outlines to data structures which
represent individual rocks. By means of patented pattern recognition means 17 the representations are for
individual rocks even if their outlines overlap with other rock outlines or are separated from them by
diagonal or horizontal clefts only (which cannot be detected by simple logic) . As soon as the OUTLINE
ANALYSER tasks recognises a rock whose outline is closed, it, in a sense, casts this rock adrift. This is done
by a DELAY call through an EVENT CONTROL WORD in the Work area associated with each rock. This
Work area also contains a TCB. Thus each rock has associated with it a task. This task is initially suspended.
It waits for the posting of the ECW in the Work area.

The delay between the completion of the rock outline and the activation of the task associated with each rock
is computed to be just after complete information from the second sensor becomes available and just before
the rock comes in line with the activator.

The second sensor measures a physical parameter of the rock, which can be used to make a decision on the
economic value of each piece of rock. The parameter measured is usually a surface parameter. This sensor is
usually connected to the computer memory via a Data Channel because transfer rates are too high for
program controlled transfers. In the memory a picture of this surface parameter is built up in a data block. It
is the completion of this picture that the task associated with each rock waits for. The re-entrant program
which these tasks execute is called the SURFACE ANALYSER. By means of the picture of the physical
parameter along the whole rock stream and the outline of the particular rock the surface of each rock outline
may be analysed separately. This analysis is carried out and the result is tested against a threshold value
which may be varied by an operator. Rocks above the threshold value are valuable and pass straight through
the sorter. Rocks below the threshold value are considered barren and are deflected into a separate stream by
the activator. The activator is energised and de-energised by a subroutine whose execution is scheduled in the
SURFACE ANALYSER by a DELEX call. Thus the deflection may occur some time after the analysis has
been computed. The time delays involved are computed so that the physical rock is in line with the activator
when it is energised. The duration of the activator pulse is tailored to the size of the rock.

The total execution time of all the task segments associated with one rock is 15 ms, on a Nova or 5 ms, on a
Nova 1200. This speed allows sorting of 70 or 200 rocks per second which corresponds to 70 or 200 tons per
hour. The system as installed uses a Nova. The actual time of flight of a rock between the first sensor and the
activator is 150 ms, so that each rock has an occupancy of 10%. The system allows for 12 tasks for surface
analysis so that there may be 12 rocks in various stages of analysis in this system at any one time.

Inspection of the code has shown that the time spent in the supervisor and the time spent in actually
processing rock data is approximately 50/50. This may seem a high ratio for the supervisor. On the other
hand there seems no way of pushing the sensors and the activator closer together so that the whole job could
be done as a uni-program. The supervisor functions are actually useful towards getting the job done. Since

42

this is an extremely fast system in data processing terms the time of 7.5 ms in the supervisor is also not very
high. In this time an average of 10 task swaps are carried out.

The only observation which should be made is that there is great scope for hardware implementation of
context switching and some of the other supervisor functions in high speed systems as the one described.

2.9.2 Materials Blending System
This is a system developed for a factory producing a continuous product which is made by mixing a number
of dry and liquid materials. These materials are mixed according to a formula which is based on a recipe for
the particular product and which contains parameters which reflect the chemical reactions taking place in
making the product. The computer based system replaces a system which was largely controlled either
completely manually or by pneumatic controllers. The computer either sets the set-points of electric
controllers or controllers are implemented in the computer by direct digital control (DDC). Either way the
computer also reads many plant parameters for control purposes or for giving alarms. The control system and
alarm system constitutes the lowest level of this system. At a higher level is the computing of all set-points
according to the formula for the current product. At a higher level again the Operator can monitor and
modify all the plant variables and vary the recipes for all the product. This is done via a Television Terminal
and Keyboard. At the highest level the system collects information about the current production for a number
of shift logs which are printed automatically on a system printer.

The system was justified on the basis of reducing the variation in the product made. This aim has been
achieved and a significant improvement in the weight variation of the final product can be maintained.
Fringe benefits are ease of changing from one product to the next and ease of winding up the total speed of
the process until some physical limit is reached. This used to be a difficult process before the computer
system was installed because of the extensive calculations involved.

The different levels briefly described above are implemented as independent tasks. This provides a nice
breakup of the work. This system was planned and coded by a number of programmers who were not
involved previously with OSCAR. Work by these different programmers could be tested independently
because of the task structure.

43

3 OTHER OPERATING SYSTEMS
The following sections are reviews of a number of Operating Systems or Significant papers about Operating
Systems which have appeared recently. The systems are looked at with a view to their suitability as real-time
operating systems. Any criticism is made with this point in mind.

3.1 A Multiprogramming System developed by B. Williams
Bruce Williams first introduced me to the concept of Tasks and Task Control Blocks19. Prior to this I had
attempted to develop a system based on a Stack only. This had been coded during the first few months of
1970 and proved to be very intractable. There was no easy way of establishing in which order execution of
various sections were going to proceed because of the unpredictable nature of Interrupts. Every now and
again the system would die because of a bug and then it was nearly impossible to establish what belonged
where on the Stack by inspection.

Bruce Williams system was made up of two sections, an Interrupt Handler which stored machine status on a
Stack and a Task Scheduler which stored machine status in Task Control Blocks. I have modified this scheme
by not having a stack, but the use of the Stack does allow the implementation of Device Service Routines
which are themselves interruptible.

The Interrupt Handler consists of four modules:

Module 1 is entered after every interrupt. It saves 2 accumulators carry and the Program Counter in
fixed locations. It then checks that the interrupting device is valid and transfers to the
appropriate Device Service Routine if it is. Interrupt remains off.

Module 2 is the converse of Module 1. It is entered after completion of Device Service if that Device
Service did not call on Module 3. It restores what was saved in Module 1 and returns to the
interruptedprogram.

Module 3 is a subroutine called from a Device Service Routine if it is going to be lengthy and requires
more accumulators. The accumulators carry and PC saved in fixed locations are transferred to
thestack. The remaining accumulators are also stored on the stack. An Interrupt Priority Mask
for the interrupted program is stored on the stack and a new mask which is passed as a
parameter of the call from the Device Service Routine is set up. Interrupt is turned on unless the
stack is about to overflow in which case it is left off.

Module 4 is the converse of Module 3 and 1. It restores all the status on one stack frame including the
Interrupt Priority Mask. If the stack is about to become empty, the last stack frame is transcribed
to the currently active task and a scan of all tasks is carried out on the assumption that one of the
Device Service Routines may have changed the status of a higher priority Task than the
currently active one. If the stack is not about to become empty Module 3 returns to the
interrupted program.

The Task Scheduler is entered in two ways. One way is via Module 4 of the Interrupt Handler which has just
been described. The second way is from a User program running as a Task when it executes the WAIT meta
instruction. The WAIT routine of the Task Scheduler saves Location 6 and 7 as well as the accumulators
carry and PC. The actual Task scheduler is then entered. This consists of executing the next instruction in
every Task starting at the highest priority Task. This instruction, which is always the instruction following a
WAIT call should be a test for some condition for which the Task is waiting. If the test fails the Task should
transfer to NO and if it succeeds the Task should transfer to YES. The NO entry continues the task scan with

44

the next lower priority task. The YES entry terminates the scan and sets up the Task which has just been
tested for further execution.

A typical calling sequence for waiting for the Teletype Done flag to set would be:

WAIT ; SUSPEND TASK AND TRY ALL OTHER TASKS
LDA 0, FLAG ; GET FLAG SET SOMEWHERE
MOV 0,0,SNR ; TEST FLAG
NO ; FORGET THIS TASK FOR NOW
YES ; PROCEED WITH THIS TASK

The system works but it is very slow. It is difficult to introduce an efficient service routine for a real-time
clock. This made me look for an improved system. In designing OSCAR the following shortcomings were
overcome:

1. Avoid too much copying from one register save area to another. Bruce Williams system saves some
accumulators in three different locations. In a fixed location for simple Device Service. On the stack
for more involved Device Service and then in the Task Control Block when the task state is reached.
For each changeover the registers must be transferred. In OSCAR a register is immediately saved in
the Task Control Block,

2. To determine the occurrence of an event the Task Scheduler must test software flags over and over
again which introduces a large overhead for Task scanning. In OSCAR the POSTing of an event
control word which is equivalent to setting a flag marks a Ready bit in the task queue which can be
tested in a 3 statement loop per Task. In Bruce Williams system the shortest scan would be 6
statements. This will often be longer.

3. The Task scan must be carried out for nearly every interrupt in case that interrupt has caused a flag to
be changed which would allow some Task to proceed.

In OSCAR a task scan would only be carried out when some task has actually been made Ready and not for
every interrupt. This is the most significant means of cutting down the Task Scanning overhead. Some
thought has been given to not doing a task scan at all but this involves setting up a structure in which priority
of a Task that has just been POSTed can be simply compared with the current Task. This problem has not yet
been solved but could lead to an even more efficient solution.

3.2 THE" - Multiprogramming System
This system developed by a team under the leadership of Edsger W. Dijkstra12 is a very early exposition of
the ideas of parallel processes, semaphores and verification of design and correctness of implementation. It
was developed on a Dutch machine of which little is said except that it has an interrupt system to fall in love
with (A property which A.M. Turing doubted a machine could have20). The aims of the system are modest, it
incorporates a paged virtual memory and it uses independent processes for servicing various tasks that arise
in the system. The paper is notable because it introduces the concept of Levels which is seen again in the
Venus Operating System. Each level takes care of a number of machine functions, which then can be ignored
at higher levels. Thus testing becomes much easier, because the operations at lower levels, once tested, may
be ignored at the higher levels. This is a very important paper which provides much of the foundations for
later systems.

45

3.3 The Venus Operating System
This system is a combined software/hardware project carried out on an Interdata 3 computer. It is an
experimental multiprogramming system supporting six users who operate on-line and interactively through
Teletypes. Its main distinction is that the system primarily caters for users who are co-operating with each
other either via common data or through co-operating processes. The system was produced to provide a
machine and a software system which would make the building of co-operating structures easier and to test
the difficulties encountered.

In many ways the aims of the Venus project are similar to the aims I have outlined in this thesis. They have
gone a step further by implementing hardware changes to a computer, which I was unable to do. I will
propose in the final section of this thesis a number of hardware operations which a real-time computer should
have. Many of these have been proposed and implemented on the Venus machine.

The features implemented are:

1. Segments

2. Multiprogramming of 16 concurrent processes

3. Microprogrammed multiplexed I/O channel

4. Hardware procedure calls

Segments are named virtual memories. Segments and core memory are both divided into 256 byte pages.
Information about each core page is kept in a core-resident table, used by the micro-program to map virtual
addresses into real-addresses. Paging is performed on demand of a page fault routine when the microprogram
cannot locate a page in core.

Multiprogramming. A process is defined to be the execution on a virtual machine 6 . This is the same
interpretation as used in OSCAR. The Venus system supports 16 virtual machines. These are made up of the
address space which is the same for all virtual machines. This is unusual but the authors explain that they see
this as an aid to implementing common data.

Each Virtual Machine has about 150 bytes of Work Area which is permanently located in core. This
corresponds to Task Control Blocks in OSCAR. In the Venus system this block is rather large. The authors
mention that the general registers and program counter may be found in the Work-Area (TCB) but no
mention is made how these registers are swapped from the CPU to the work area and back when processes
are re-scheduled. One possibility is that the micro-program operates directly on the memory locations
holding these registers for the current process. If this is the case the system would be rather slow on most
machines.

Synchronisation between processes is carried out exclusively by the 'P’ and 'V' operations on semaphores as
defined by Dijkstra5. The implementation of the semaphore linkage to waiting processes is virtually identical
to the implementation in OSCAR. The only difference is that re-scheduling after a 'V' operation is done on a
priority basis. This is something worth investigating for OSCAR.

The Input/Output channel implementation appears to take advantage of the fact that interrupt servicing is
carried out at the micro-program level and signalling to the process is achieved at the completion of an
operation by performing the 'V' operation (RAISE) on a special semaphore. This semaphore is located in the
Work Area (TCB) of the process which started the transfer. This appears to be an odd way of doing it,
because in the earlier description on the implementation of semaphores it is stated that the address of the
Work Area (TCB) is stored in the semaphore. Maybe the Work. Area simply provides a convenient spot
which is available dynamically.

46

Procedures are stored in unique segments and may be used re-entrantly. A calling system, a means of passing
arguments and a push down stack is implemented. Not much detail is given.

One very good conceptual feature of the Venus system is the systematic use of the idea of Levels of
Abstraction as defined by Dijkstra2. This, the authors claim should lead to a better design with greater clarity
and fewer errors. I agree wholeheartedly with this, and have shown that the OSCAR facilities are similarly
structured.

The following levels for virtual devices have been used:

Level 0: Micro-program without real-time constraints
Level 1: Software controllers - one for each device
Level 2: Interface between User and Controller

Several other levels are presented.

3.3.1 Critical Comments on the Venus System
It is difficult to make valid criticism of a system one has not used. But the following points are felt to be
shortcomings in the system which have been improved upon in the OSCAR system.

The stated exclusive use of semaphores for synchronisation is felt to be the biggest weakness. Although
semaphores are very powerful, and Dijkstra attempts to prove that they are sufficient for all synchronising
functions, it is difficult to see how to implement the case where one process waits on one of a number of
events. Mention is made of this case in the paper and a mechanism called 'queues' is used for this purpose.
Queues are operated on by 'Send' and 'Receive' operations. Queues are held in a common segment called
'queue segment'. This sounds a very similar scheme to 'RTOS' channels. For some reason the authors exclude
this mechanism from process synchronisation. I suspect that this is a second means of process
synchronisation and 'Queues' perform a similar function to 'Event Control Words' in OSCAR.

The arbitrary limitation to 16 processes is probably dictated by the micro-program of which details are not
available. For real-time control it is easy to visualise systems with many more than 16 concurrent processes.
These need not all be available with hardware context. But the Operating System should allow scheduling of
extra low priority processes which may share the lowest priority hardware Work Area (TCB). Such low
priority Processes are generally not time critical and the overhead in swapping TCB's would not be high.

The so called hardware implementation of the VENUS functions is carried out by micro-program. The use of
micro-programmed processors for real-time work is a problem which I have not resolved to my own
satisfaction. Micro-programming makes it possible to implement operations such as described above with
relative ease compared with the design of these operations in hardware without micro-program. Until the
need for these operations becomes generally recognised for building operating systems, micro-programming
provides the most efficient solution. But with the imminent replacement of core memory with semi-
conductor main memory I foresee that the machine instructions will be executed just as fast as present day
microinstructions. Delay in gating circuits is going to be the limiting factor. Speed is always important, and
the cost of a mass produced central processor which is designed for minimum execution time of all machine
instructions will be negligible compared with a simpler micro decoder and micro memory which has to run at
least 5 times faster than main memory to be of any use. Execution speed of some micro-'programmed
instructions can be very slow, and often the use of a more powerful main instruction set working at micro-
instruction speed will provide a faster solution. Operations such as 'P' (LOWER) and 'V' (RAISE) should
actually be included in any instruction set.

47

3.4 The Data General Real-Time Operating System (RTOS)
This is a system for the Nova family of computers10 which became available in Australia towards the end of
1971. It fulfils a need similar to OSCAR and it draws on a common background. The introduction to the
Manual summarises the aims of the system:

RTOS consists primarily of a small, general-purpose multi-programming monitor designed to control
a wide variety of real-time input/output devices. User programs are relieved from the details of I/O
timing, data buffering, priority handling and task scheduling. In addition they are provided with a
parallel processing capability plus inter-task communication and synchronisation facilities.

RTOS Tasks are organised in four states. Executing, Pending, Suspended and Dormant. Only the last state is
new for OSCAR users and it simply describes the condition when the Task Control Block is on a list or pool
of unused or available blocks.

The Task Control Block in RTOS only saves the PC, Accumulators and Carry. It also contains a Priority
number which can be varied from the Task and a Link Word. No private memory locations are provided.

RTOS provides eight meta-instructions for users. Whenever a meta instruction is executed control is returned
to the user via the RTOS task scheduler. A brief listing of these meta instructions is:

.IOX
<logical device#>
<device control word>
<first data item pointer>
<data item count>
<error routine address>
<normal return>

This call initiates Input/Output on the device specified according to a scheme encoded in the device control
words and to a buffer described by the pointer and counter. Return is not made until the transfer is complete.
This type of call has the following shortcomings in a control environment:

1. It allows only for data transfer not for control actions.

2. Buffer locations and size has to be determined at assembly time. There is no facility for using
dynamic storage.

3. The operation is at too high a level • No lower level operations are available to users. Thus simpler
operations such as transfers of single bytes are too cumbersome and time consuming.

.FORK
<new task priority>
<new task address>
<next statement in current task>

This call is the only way of generating more tasks. Because the call has the appearance of a branch
instruction, there is a temptation to generate new tasks all the time. This is time consuming. The examples
given in the RTOS manual do exactly this, so I feel my fears are justified.

.QUIT
<next statement>

This call places a task in the dormant state. The recommended way of executing a task in parallel with
Input/Output is the following abbreviated coding sequence:

48

.FORK ; CREATE A PARALLEL TASK

.IOX ; DO I/O

.QUIT ; DELETE TASK WHEN I/O COMPLETE
; CARRY ON PARALLEL PROCESSING

NOTE: For every time this code is executed the main stream is shunted to another task. It is often difficult to
see in RTOS programs what code belongs to which Task and to keep track of parallel operation. The
programs still look like a conventional serial program.

.PTY
<New Priority Level>
<next statement>

This operation alters the priority of a task dynamically.

.WAIT
<# of clock cycles>
<next statement>

This operation is used to delay the execution of the current task for a specified time interval. It is the only
way of accessing the Real Time Clock. Again I feel this operation is at too high a level and does not allow
the user enough scope to do simpler things with the real-time clock. Maximum clock rate is 100 Hz.

.XMIT
<Channel #> or @<Channel #>
<next statement>

. RCV
<Channel #>
<next statement>

This is a complementary pair of operations which are provided for the purpose of Task synchronisation.
The .XMIT command causes transmission of a 'synchronisation signal' over the specified channel. If an '@'
sign is present in the channel number argument, the Task will be placed in the suspended state until the .RCV
command on the same channel has been executed. Otherwise the Task will be allowed to continue. Upon
executing the .RCV command, the current Task is placed in the suspended state until the signal is received, at
which time it will be made pending and become available for execution again. A fixed number of channels
(usually 8) must be set at system generation time. These are all the channels that are available to users.

The following sequence is the recommended way of implementing Conways FORK-JOIN operations:

49

I would regard such schemes as a waste of time in an environment in which only one processor is available.
Conway created this structure for allowing the use of more than one processor on one problem. In OSCAR a
structure is developed for allowing one processor to do a number of problems at the same time. RTOS does
not emphasise this point enough.

The final operation is:

.SBRK
<Character code (ASCII)>
<return>

This instruction is not intended to function as a general purpose meta-command. Its use is primarily intended
for the operation of a keyboard orientated executive. Its operation has to be set up at system generation time.
Usually a Teletype interrupt service is enabled for the Break feature, and a special task is created which is
suspended with the .BRK call until the character in the call is keyed on -he Teletype. Then all other tasks
waiting for I/O on the Teletype are made dormant and the special break task is made active.

This again is a very high level and specialised operation which could be implemented very easily with the
basic functions of OSCAR. Because these are not available in RTOS, this high level function becomes
necessary. To illustrate the point I will show how the same facility could be implemented under OSCAR:

• In the Interrupt service routine for each Teletype Keyboard which is to be allowed to cause a break,
test the character transmitted by the keyboard after the interrupt against the break character, which
must be stored at some convenient location. If the character received is the break character, POST a
special EVENT CONTROL WORD which may be called BRKEC for example. The character is not
treated as data from then on.

• Provide a special Task which carries out the function of the Keyboard Executive. After initialisation,
this task is made to WAIT on the EVENT CONTROL WORD BRKEC. Thus if the break code is
typed on a keyboard this Task is activated.

• If a number of keyboards may cause a break to occur, the POSTing in the Interrupt service routine
may store a device identification in this POST code section of BRKEC. The Keyboard Executive
Task can test this code.

Since RTOS is a system on the same computer I am working on, actual hands on experience of the system
was possible. I have coded a number of test programs and tried to compare them with OSCAR. For this
reason any criticism can be much more detailed.

The following features were found to be inadequate:

1. Teletypes and Teletype like devices were not treated as separate Keyboard and Printer devices but as
a composite. This introduces a number of logical difficulties which need not be there. Since this is
the most complicated device, it is seen as the prototype and much of this complication is carried
across to single devices such as the Line Printer.

2. The system is rather long. It is in excess of 2,000 words against 600 for OSCAR. Execution speed is
slower. The basic overhead for each interrupt is 70µs as against 14µs in OSCAR.

3. The system is monolithic, despite claims to the contrary. It consists of one relocatable program.
Included in the 2,000 words are the complete lOX package and one Teletype driver. Neither of these
may be left out if not required. More Teletype or other device drivers require more relocatable
programs and more space.

50

4. Space and time is wasted by saving the processor status in a block reserved in each device service
routine when an interrupt occurs, and then transferring this status to the TCB if this interrupt leads to
a change of Tasks.

3.5 HP 2005A Real Time Executive System
This is a system for the HP 2116 B computer. It has a task structure which is very similar to RTOS, although
the word task or process is not used. The manual talks about parallel programs and the name given to the
TCB is the Program Identification Segment. It again recognises four states:

1. Execution

2. Suspended

3. Scheduled

4. Dormant

I/O processing goes a step further than in RTOS by allowing the stacking of I/O requests. This is
implemented in OSCAR via Double Ended Queues.

An Operator Keyboard Monitor is an intrinsic part of this system. The operator can change program status,
operating environment and load, start, and stop programs. This feature is at a higher level again than the
RTOS BRK feature and in my view should be a separate facility, which may be used if it is wanted.

3.6 The HP 12659A DACE System
This system is called a Data Acquisition and Control Executive (DACE) which can be run on 2114A, 2115A
or 2116B computers with 8K Memory.

It is organised on a so called Task structure, but a DACE Task has a different connotation to a process. In
DACE a task is a program, which is activated at regular intervals as defined by a real-time clock. An Interval
time and a Phase time are task parameters. These are usually set at system generation time but can be altered
dynamically or through the system keyboard. The scheduling time can only be set in seconds. No finer
resolution is possible. The manual gives examples of tasks scheduled every 30 seconds. This time looks
typical.

Examples of tasks that may be scheduled are Data Acquisition scans and execution of control algorithms at
regular intervals. Character input and output is via a buffered interrupt driven module.

The Description of Tasks in this system emphasises the serial nature of the programs. Each Task when
scheduled will start at a specified starting point, not at the place where it last stopped as in OSCAR. The Task
will then run to its finishing point which is coded in some way. For testing purposes a Task may be run from
start to finish once by a command from the system console.

The system is compatible with a FORTRAN II and ALGOL run time library and formatter which is very
useful. But this means that the system uses 80% of memory in an 8K system leaving only 2K words for User
programs. This software package cost $1000 in 1969.

There are a number of similar systems on other computers which vary in small details but which are mainly
driven by a real-time clock scheduler.

Examples are CAMP for the LN5100 processor, RSX-15 for the PDP-45 and MOS for the Varian 620. There
is also RTX for a SPC-42 processor.

51

RSX-45 and a recently released system RSX-11 for the PDP-11 are probably the most versatile systems
because they do contain system calls which would allow synchronisation with arbitrary events. The
presentation of these system stresses the 'scheduling at regular intervals' approach. I have seen no system
except 'Venus' which incorporates semaphores, allows scheduling of tasks from user interrupt service
routines and implements a general double ended queue system for data buffering. None of the systems seen
incorporate a real-time clock routine which provides both interval counting and event scheduling and is fully
re-entrant so that it may be used for several pulsed inputs simultaneously. Also no system has been seen
which allows accurate frequency measurement from pulsed inputs.

3.7 VORTEX. Varian Omnitask Real Time Executive
VORTEX is a Real-Time executive which combines user written tasks with a Job control processor which
can handle language processors as background tasks. To allow full use of foreground background processing
a Varian 620 computer with 16K of memory and a rotating disc file is required.

The system is organised around a Task Scheduler and an Interrupt handler. Task Control Blocks are threaded
(a word used in the VORTEX manual) on two lists. These are the busy list and the unused list. TCB's on the
unused list are dormant. As Tasks are scheduled a TCB is taken from the unused list and threaded onto the
busy list. The threading operation is carried out according to a priority number which is supplied as a
Scheduling parameter. There are two system tasks which may be scheduled under certain conditions.

1. SAL is a memory allocation module which is activated if a task is not resident in memory.

2. ERROR is activated for a number of common errors.

There is a space for a variety of non-resident foreground and background tasks. Background tasks may be
pre-empted once, if the space they occupy is required by a foreground task. The resident portion of the
system is comparatively large. 0.5K in low memory plus 6K in high memory.

The communication between users and the real-time executive is via system macros which, when expanded
have the general form of a subroutine call to the system with a number of arguments which follow this call.
The first argument gives the function which is required. This is executed interpretively by the system. The
other arguments vary for the different calls. Such a scheme must be fairly slow compared with direct
subroutines for each function which is used in OSCAR.

Functions which are available in VORTEX and the nearest equivalent in OSCAR or other systems are listed
below:

FUNCTION EQUIVALENT DESCRIPTION

SCHED FORK Schedule a task

SUSPND (WAIT) Suspend a task

RESUME (POST) Resume a task

DELAY DELAY-WAIT Delay a task

PMSK
-

Store hardware priority mask register

TIME TIM Obtain time of day

OVLAY
-

Load and/or execute an overlay segment

ALOC
-

Allocate a re-entrant stack

DEALOC
-

De-allocate the current re-entrant stack

EXIT EXIT Exit from a task upon completion

52

ABORT
-

Abort a task

IOLINK
-

Link background I/O

Most of these operations are self explanatory in the context of this paper but the following comments are in
order about the SUSPND and RESUME operation.

The SUSPND function suspends the execution of a task making the call. The task can be resumed only by an
interrupt or a RESUME call in another task. The type of resumption which is anticipated is in an argument of
the SUSPND call. If interrupt resumption is specified, there is no indication which interrupt is going to do it.
This is a function of previously set up information in Interrupt event word of the TCB which links a Line
Handler (Device Interrupt handler) and the task when the particular line interrupts. The Resume call in
another task must nominate the task which is to be resumed. No mention is made in the write up what
happens when a SUSPND call is made and the Interrupt or the RESUME call it is suspended for has already
occurred. I suspect this is not allowed, and this would make the writing of tasks much more difficult under
VORTEX.

The DELAY operation only allows the calling task to be suspended, and the time of resumption is computed
from the time the call is made. This is similar to the RTOS Delay call. The VORTEX call does allow an
interrupt to cause earlier resumption. Thus DELAY can be used to time out a device. In OSCAR this must be
done with a multiple WAIT operation.

There are a number of I/O control functions in VORTEX which are coded at a higher level in OSCAR. The
most important of these are:

OPEN, CLOSE, READ, WRITE, STAT

The last of these is interesting. STAT refers to the address of a READ or WRITE macro and tests the status
of the transfer. If this transfer is not complete it transfers to a user nominated busy routine. The VORTEX
manual warns that this function should not be used in foreground tasks because it hangs up the System. The
completion of I/O functions cannot be tested in any other way, so the only way to allow parallel processing
of I/O and other computations is to generate parallel tasks with a SCHED (FORK) function. A general WAIT
operation such as is used in OSCAR is clearly missing. Also missing are operations to mark the boundaries
of critical sections such as LOWER and RAISE.

This system is extended to be a full Disc Operating system. The Job Control Language and the means for
managing background tasks merit further study if an extension for OSCAR in this direction is undertaken.

3.8 The Tenex Time Sharing System
This is a paged time sharing system for a PDP-10 computer15. This system is unusual in that the use for this
system is mainly a multi-terminal computing facility. As such it is not very different to users than a number
of other time sharing systems. But the implementation is very different because it is based on a state of the
art virtual machine and a multiple process capability with appropriate communication facilities.

This confirms a belief I have, that the use of systems using parallel processing is not confined to real-time
control applications, but that these schemes allow the implementation of very powerful general purpose
computing facilities with attributes which users would like to have. At present there is no satisfactory mini-
computer system which will allow simultaneous Fortran compilation and execution of other programs, such
as Basic. This problem would be solved by using a parallel process orientated system such as OSCAR as the
kernel of a more general Operating System.

53

Tenex is such a system for a large processor. A number of changes were made to the hardware of the
processor. The most important of these is a paging mechanism. Enough information is kept about each page
to determine if it is in core, if it has been modified or not, (this saves copying back to disc) and if a shared
page is about to be modified. If it is, a private copy will be generated. This allows the running of non-pure
procedures as if they were re-entrant.

No mention is made of the implementation details of process synchronisation. All input output is carried out
through the executive in a fairly standard manner. The implementation of File Handling is worth looking at.
Being a system which may have many simultaneous compute bound processes a fairly sophisticated
Scheduler is used. It is based on the concept of Occupancy and the paper provides many useful hints on how
to implement such a system.

54

4 CONCLUSIONS
The time involved in planning and coding the first version of OSCAR took 4 months during the latter part of
1970. During the 2 years since then a number of modifications to the system have been made. In particular
Semaphores and Double Ended Queues were added. Experience with the system has shown that it is easily
picked up by programmers. The functions, particularly the synchronising primitives, are at first unfamiliar
but with a little practice they are used as intended. Thus parallel programming as against uni-programming
comes naturally to most programmers when a task structured system such as OSCAR is available to them.
There is still a certain amount of resistance to going all the way with the parallel approach. Programmers
traditionally join their real-time--routines into a string which is repeated at regular intervals (usually once per
second). In the parallel approach each routine would be coded as a separate task with its own repetition time.
It can be argued that this is not quite as efficient as the one second loop approach. But the increase in
flexibility would often outweigh this slight decrease in efficiency.

The effort in producing this system is felt to have been worthwhile. Such a system as the Ore Sorter could
never have been made fast enough with systems such as RTOS which have become available in the
meantime.

The work was influenced by the academic discipline. This has resulted in a broad survey of the field before
the actual implementation of a system was started. The work was also influenced by the constraints of
industry. This has resulted in a system which has had to stand up to the tests of being used in a real and
generally hostile environment. OSCAR hopefully contains the best of the current state of the art in the real-
time operating system field and represents an implementation which is up to engineering standards. The fact
that it is still up to date after two years is at least gratifying.

Some extensions of OSCAR which are useful have been outlined in the body of this thesis. The usefulness of
this and similar operating systems on small computers could be made even greater if the computer
architecture were modified to implement some of the lower level operations which must now be done by
software. This would speed up execution significantly. Some computers already have such hardware. For a
Nova the following additional hardware facilities are recommended:

1. Extended memory mapping facility allowing 3 maps and 3 sets of accumulators associated with 3
processor states (i) Interrupt Processing, (ii) Executive Processing and (iii) User Processing.

2. Allow I/O instructions only during the Interrupt Processing and Executive Processing states. In
the User Processing state these instructions are replaced by a general Supervisor Call (SVC)
whose execution unconditionally traps to Executive Processing Mode and three conditional trap
instructions which have the format of Memory Reference Instructions without Accumulator in the
Nova Instruction set. These are:

 (i) Increment and Trap if Minus or Zero. This is used to implement the 'RAISE'
operation on a Semaphore.|

(ii) Decrement and Trap if Minus. This is used to implement the 'LOWER'
operation of a Semaphore.

(iii) Increment and Trap if Positive. This is used to implement the 'WAIT'
operation on an Event Control Word. This scheme requires a slightly different
format for Event Control Words.

55

A fourth instruction 'Decrement and Trap if Zero or Positive' would complete the set and would do the
'POST' operation. This could be implemented on other machines which have more instructions to spare. This
instruction is mainly used in Interrupt Service, where a Trap does not apply.

With the aid of these extra instructions and a hardware Supervisor Call linkage all the occupancy overhead of
Task synchronisation operations would be reduced drastically. Particularly semaphores could be used much
more freely. In most instances critical section are not critical and there would be no hold up. It is just the odd
case which happens say once in a thousand, in which a semaphore must catch another task using a critical
section.

The simple Wait operation which is used frequently in I/O routines is also speeded up. A Multiple Wait must
still be specially written.

It is hoped that the general acceptance of a process or task oriented way of programming will induce
manufacturers to provide computers with these or similar facilities.

56

4.1 References
1. Wirth, N., On Multiprogramming, Machine Coding and Computer Organisation. Comm. ACM 12, 9

(Sept. 1969), pp 489-498.

2. Wegner, P., Programming Languages, Information Structures, and Machine Organisation. McGraw
Hill, New York, 1968.

3. Digital Equipment Corporation, Introduction to Programming.

4. Habermann, A. N., Synchronisation of Communicating Processes. Comm. ACM 15, 3 (March 1972),
pp 171-176.

5. Dijkstra, E. W., Co-operating sequential processes. In Programming Languages, F. Genuys, Ed.,
Academic Press, New York, 1968, pp 43-1129

6. Lampson, B W. , A Scheduling Philosophy for Multiprogramming Systems. Comm. ACM 11, 5
(May 1968),.pp 347-359.

7. IBM Operating System/360. Concepts and Facilities. In Programming,-Systems and Languages, S.
Rosen, Ed., McGraw-Hill, .New York, 1967, pp 598-646.

8. Conway, M. E., A Multiprocessor System Design, Proc. FJCC 1963, pp 139-146.

9. Dijkstra, E. W., Programming considered as a human activity in Proc. IFIP Congress 65, vol. 1, 213-
2170

10. Data General Real-Time Operating System, Data General Corporation, Southboro Massachusetts.

11. Benson, D. and Others, A Language for Real Time Computing Systems. British Computer Society
report of On-line computing systems and . languages working party.

12. Dijkstra, E. W., The Structure of the "THE"-Multiprogramming, System. Comm. ACM 11, 5 (May,
1968), pp 341-346.

13. Liskov, B. H. , The design of the Venus operating system. Comm. ACM, 15, 3 (March 1972),
pp 144-149

14. Dennis, J. B. , and Van Horn, E. C. , Programming semantics for multiprogrammed computations
Comm ACM 9, 3 (March, 1966), pp 143-155

15. Borrow, D. G. , Burchfiel, J. D. , Murphy, D. L. , Tomlinson, R. S. TENEX, a paged time sharing
system for the PDP-10, Comm ACM 15, 3 (March 1972) pp 135-143.

16. Varian OinniTask Real Time Executive (VORTEX), 98A9952 (Sept 1972) Varian Data Machines,
Irvine, California

17. Dwyer, F. B , Thompson, R. L. , Wulff, E., High Speed Sorting, Australian Patent 425088.

18. Phister, M , Logical Design of Digital Computers, John Wiley and Sons, Inc., New York.

19. Williams, B., Private Communication.

20. Turing, A.M., Can a Machine Think, in the World of Mathematics, ed.-Newman,, T. R., Vol. 4, pp
2099-2123. George Allen and Unwin Ltd.

21. How to use the Nova Computers, Data General Corporation, Southboro Massachusetts, 1972.

57

5 APPENDIX
The derivation of instruction mnemonics for NOVA computers is as follows21:

The following mnemonics have been added to make arithmetic tests easier to interpret:

IFEQ s,d SUB# s,d,SNR ; next if s == d IFZ s,- MOV# s,-,SNR ; next if s == 0
IFNE s,d SUB# s,d,SZR ; next if s != d IFN s,- MOV# s,-,SZR ; next if s != 0
IFGE s,d ADCZ# s,d,SNC ; next if s >= d IFZP s,- MOVL# s,-,SNC ; next if s >= 0
IFLT s,d ADCZ# s,d,SZC ; next if s < d IFM s,- MOVL# s,-,SZC ; next if s < 0
IFGT s,d SUBZ# s,d,SNC ; next if s > d IFP s,- NEGZL# s,-,SEZ ; next if s > 0
IFLE s,d SUBZ# s,d,SZC ; next if s <= d IFZM s,- NEGZL# s,-,SBN ; next if s <= 0

; else skip IFM1 s,- COM# s,-,SNR ; next if s ==-1
IFNM1 s,- COM# s,-,SZR ; next if s != -1

CLA d,d SUBC d,d ; clear acc d ; else skip

‘s’ is source Acc 0, 1 ,2 or 3; ‘d’ is destination Acc 0, 1, 2, or 3; ‘-’ Acc not used (usually same as s)

The following pages contain the full listings of the OSCAR system in Nova assembler code.

