A MONITOR FOR REAL-TIME
CONTROL SYSTEMS

E. Wulff, B.E.

Thesis project carried out as part of a Master of Engineering Science course at the
University of New South Wales.

Table of Contents

Thesis project carried out as part of a Master of Engineering Science course at the University of

INEW SOULN WSttt sttt ettt sb et be b esaeene e i
PREAMBLE ... oottt ettt ettt ettt et s bt et s st e s bt et e st e st e e besat e bt et e eatenbeeasesseeenseeens 4
1 INTRODUCGTION......cotiiitiieritetteteetestt ettt ettt st st sbe et sat bt satesstesbeeaesbeessesatesstebeesnneeeaneas 1
1.1 Real-TimMeE SYSIEMIS....ccciuieirrieirieeeiieeeriteeeiteeetteesteeesteessseessasaesssseesssseesssseessssasssssseessssnssaeeenns 2
1.1.1 OCCUPANCY...uutttetiiiiiteeeeiiteee ettt ettt e e ettt e s e bre e e seiraeeseeasbteeeesreeeesessaeeseensrteesennneeessssanns 2
1.1.2 A tYPICAL SYSIOML...uuuviiiiiiiiiiieeiiieeeiiteesieeesieeesteeesteesstaeessaeessbteessseessssaessssaaessnssssnaeessnssssees 4
1.1.3 Difficulties with Uni-programming...........cceceerieriieerieniiennieniieesteeieeseeseireessieeessneee e 5
1.1.4 MUlti-prOCESSOT SYSLEIMIS. ..ccuuvieirureeirireerrireerrieeesiteeesireessseeessseeesseeessseessseesssssesssessssssseesenns 5
1.1.5 TimME-SNATING.ceriiiiieiiieieeteet ettt ettt et s et e et e bt e sbe e s abteessabeeessasaaesnns 5
1.2 SYSLEIM STIUCTUTE. ...ceiiuiiieiieiiiee ettt et ee et e e et e e e s sbat e e e s beeeesssbteeessasbeeeesnseeessssssssaaaaeeaeens 5
1.2.1 Process INAePENdEINCE...........cocuieriiiriienieeiteeie ettt ettt s e st sateesbe e st e e s sssbaessneaesans 6
1.2.2 Function of the Hardware INteITUPL........c.ccoveeieiiieriieiieeieereeeieesieeecreeeeireeeeveeessveeeenes 6
1.2.3 Instantaneous DeSCIIPLION.cciieeurteeieiiiteieeitee et et e et e e s srreeesesarreeeeeessessnnnnnes 6
1.2.4 Timing ConSIAETIAtiONS.ccecuttirvierrireeriieerrteeeiteessieeessreeesseeessseessssessssesssssessssssssseessssssnns 7
1.2.5 Device Service ROULINES.........ccccueiiuiiiiiiiiiiiiiiiiniiciire et rre e 7
1.2.6 Processes and TasKS........ccueerueeeriierniieeiiieeesteesieeessieeesieeeseeeesaeeesseessssssneasessssnssaeeesns 10
1.2.7 Task Control BLOCK......ccc.cotiriiiiiiiiiieteeenteteeeteste ettt 11
1.2.8 TASK STALES. ...coueiiiieeieeteetee ettt ettt st e bt e st e bt e sab e e bt e s e e e see s e e e neeenane 12
1.2.9 Task IMpPlementation...........cceevueirieriiiinieeieet ettt ettt s e et esae e ssbeeeenaee 12
1.2.10 Concepts related t0 TasKS......cccueiruierriieiniiieiriiieeieeerieeeteessee st e e st e e seeeesaeesssaaeaeees 13
1.2.11 Ideas taken from Hardware DeSign...........cceceerieiiiiinieniiieiienieeeeeieet et 14
1,212 EIVEIES.c..eteiiiieeiiteete ettt ettt sttt st e ab e et e s sab e et e e e ra e e e ba e e e nnraaees 15
1.2.13 Event Synchronization with Event Control Words...........c.ccecevervenienennieenieeneenennen. 16
1.2.14 CritiCal SECHIOMS. .ecuviiieiiieiiiieeiiteeriee et e erteeeste e s ttessreessabeessabeeessseessssaessssaaeesssnssaeeesns 19

2 REAL TIME OPERATING SYSTEM "OSCARoottitieiteteetetee ettt esieee s 21
2.1 SysStem HIETarCh......cccveiiiiiieiieeiieerieeeseeste ettt e sttt e s be e st e e saee e sbaeesbaessasaeeens 21
2 LT LEVEL Ottt ettt ettt st ettt st sae e bt st e e s aneesanee e 21
212 LEVEL Lttt ettt ettt sttt st b et e e sat et et e e st e e s abeesabeeeas 22
213 LEVEL 2ttt sttt st b e st b et e e e eas 22

2 LA LEVEL 3.ttt ettt ettt et b e et s a e bt et e st e e s abeeeabeeeas 22

2 L5 LEVEL ettt ettt sttt b e st sa bbb e sareeeas 23

2. L6 LEVEL 5.ttt ettt sttt et e b e et s bt e bt et e st e e s abeesabeeeas 23

2. 1.7 LEVEL Bttt sttt ettt sttt et st e b st esaneeea 24

2. L8 LEVEL 7.ttt ettt ettt sttt ettt sa ettt e st e e e abe e areeeas 25
2.2 INterTUPt HANALOT.......coiiiiiiiieee ettt ettt st st e b e 26
2.2.1 Return frOm INEEITUPL.....cueiiieeieeiieeieesteeteeste et eseteeteesaeeseessteeseesssesseesssaessssessnssenens 26
2.2.2 TaSK SCHEAUIET......couiriiiiiieiee ettt ettt st sb e s s s eare e 26
2.3 OSCAR Meta-INStIUCTIONS.uuvveeiieiiieeeeiteeeeeriteeeeeiieeeeseiteeeessrteeessareeesessaeeesssnsaeessssseeeens 27
2.3.1 Address Parameters..........ccceeueeuereerieriierienieeteetesseessesate st esseetesseessesatesstesseseesenseesnseenns 27
2.3.2 SUPETVISOT Call...ciiiiiiiiiiiiiieiiieetteete ettt ae e e be e s b e e s ba e e sbaessabaessnsaesnannns 27
2.3.3 EXit fTOM SUPETIVISOT.....ceitiiriiiiiienieiiteeteett ettt ettt ettt et esteesbaesabeeesaseaeeas 28
2.3.4 POSt QN EVEIL......eiiiiiiiiiiieiiteeeeiteee ettt e sttt e e s sttt e s sttt e e e sssateeessssaeesesnsbaeesnsnsnneee 28
2.3.5 Wait for @ Single ' EVENL.....c.c.coiiiiiiiieeieciteeeeteete ettt ettt et s ae s 29
2.3.6 Wait for MUltiple EVENLS........ccccuiiiieiiieiieeieecteeteeeteeteesieeeaeesieesteesaeesssesssaeenssaaesnneens 29
2.3.7 SEIMAPRNOTES.......eiiiiieiieeieeteet ettt ettt ettt et e st e bt e st e e bt e st e e bt e s be e ab e e e e bbee e naee s 31
2.3.8 LOWET @ SEMAPNOTE......cciiciiiiriieiiieiiiie ettt e esreesiteessieeesbaeesaaeessaraaeeesssssseeessnnsenes 31
2.3.9 RaiSe @ SEMAPNOTE.......coiiiiiiiieiieieeiee ettt ettt ettt et s st esate e st e e e s anee s 31

2.4 Simple Drivers and Interrupt Handlers..........coccoieviriiniiiinnieniienieneceeieseeseeee e 31
2.4.1 Teletype Driver and Interrupt Handler...........ccccveroieiniiiiniieiniieiieecieeeeeeseeee e 32
2.4.2 Drivers and Interrupt Handlers for other Terminals..........cccccecueverniniiinennennenenienieenne 33
2.4.3 Data Communications MultipleXor DIIVeT..........ccceciiiriiieiniiieiniiieiiiecieee e e 34

2.5 Double ENded QUELES.........couuveeiiieeiiieeiiteeieee e ettt tee e e e eesseiarteeeeesesssssssssssssssasaaasnssssssnsssseens 36
2.5.1 DEQ Initialisation ROULINE..........ccooviiiiiiiiiiiiiiieee 36
2.5.2 Get a Cell from @ DEQL......uuuuiiiiiiiiiiiieieiiieeee ettt eeevare e e e e e e s ssaasateeeeseessssassaannas 37
2.5.3Puta Cell on @ DEQUu...ccooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt 38

2.6 ELAPS@A TIMIE....c..ueiiiiiiieeieeiteetee ettt ettt ettt e st st e st e e bt e s st e st e e atesabeensaesaseenaeens 38

2.7 EVeNt SChOAUIINE.....ccccvtiiiiiiiiieeieeeteeee ettt st ste e e sate e s ae e e saae e s sabeessabeaessssssnnaaaeens 38
2.7.1 Time SChedULING......cc.coiiiiiieiiteeetete ettt ettt et e e st e e st e e ssbeeeeaes 39

2.8 DEBUG TASK ... ettt ettt ettt sttt et st e st et s et e b e s et e sbe et e s st e nbeebesaeennee 40

2.9 Applications Of OSCAR ...ttt ettt et e sttt e bt e aaesbeesaeees 41
2.9.1 OF@ SOTTOT......ueiiiitieeiieeetee ettt ettt et e et e s bt e e e bee e e bt e s e bt e semb e e smbeesnbeeesbeeessennnnas 41
2.9.2 Materials Blending SYStOIM........cceeruteriierriiinieeiienieeieeste ettt eee ettt este e ssibeeessareeeenes 42

3 OTHER OPERATING SYSTEMS....cutttitiiteteeteeeteett ettt sttt ettt st sae et e sbe e s 43

3.1 A Multiprogramming System developed by B. Williams..........ccccceouerirnienieninienenieenieennne 43

3.2 THE" - Multiprogramiming SYSTEIML........ccccuveerueeeriueersueersiueessseesseessseeessseesssssseeesssssssseeessssns 44

3.3 The Venus Operating SYSLEIM.......ccccuteruieriieerierieerieeieesitesteesitesteesaeesseessaessseesssessseesseessssseens 45
3.3.1 Critical Comments on the VENUS SYStEIM......cccccueeriuierriiieirieeniieeniieenieeeneeessneeeeesssnnneens 46

3.4 The Data General Real-Time Operating System (RTOS).........cceccteriiriiiniinniiinieeieereeeieenne 47

3.5 HP 2005A Real Time EXeCUtiVe SYSTOIM.....ccuuiiriuiririiieirieeiiieesiieeesieessiteeessareeeeessssnnneeesssnsnns 50

3.6 The HP 12659A DACE SYSLeIM.....cccutrteruiirierienitiieetesitere et esteetesstessessesseesseesesseesseesane 50

3.7 VORTEX. Varian Omnitask Real Time EXeCULIVe........cccccerriiirriieiriieiniieiniieenieeeeenireeee e 51

3.8 The Tenex Time Sharing SYSTeIM.......cccueecueiriiriiiiriierieeite ettt ettt sbe et eesbee e s eareeees 52

4 CONCLUSIONS ...ttt sttt sttt et et s bt et st e st e et e sat e bt et e sate bt ebesatesateesabeennbeenass 54

4.1 REEIEINCES. ..ottt sttt ettt et e ae st b et e bt e b e b e satesbeebe et e saeeneeeas 56

SAPPENDIX ..ottt s e 57

PREAMBLE

This thesis was started in 1969 as part of a Master of Engineering Science course at the school of Electrical
Engineering at the University of NSW (UNSW) and completed and submitted in 1972. The subjects studied
were mainly computer science subjects. An exception was Reliability Engineering, a topic which I had
previously already been very interested in while designing large electronic switching systems for the
telephone industry. In my career as a Software Engineer I concentrated very much on producing reliable
software and developed methods to ensure that software was reliable. Since this thesis was produced when I
was first introduced to computer software, it already shows my efforts to bring an engineering discipline to
the field of software design.

The first version of the Real Time Operation System ‘OSCAR’ described in this thesis was implemented in
1970 on the PDP-8 computer of the school of Electrical Engineering. It worked beautifully with just the
Teletype I/0 and high speed tape reader and punch I/O. At the time I was working for the CSR company in
Sydney at their research laboratory designing electronic switching systems for factory control using TTL
logic IC’s. T convinced the company to buy a Data General Nova computer in 1970 to develop industrial
control systems using mainly software. The Nova was a more powerful machine. It had 4 16 bit
Accumulators compared to a single 12 bit Accumulator for the PDP-8. Hence I ported OSCAR to the Nova
computer, without changing the basic design. It worked well for a number of projects carried out at the
research laboratory (2 of which are described in the thesis). Unfortunately I was never allowed to publish any
papers about this work at the time. It was deemed to be too valuable and was classed as company
confidential. Even this thesis was not allowed to be put in the University of NSW library for 10 years and I
had to sign a non-disclosure agreement for the next 10 years.

In 1988 1 was working for a manufacturer of PLC’s in Germany and was given the task of writing the
firmware for their new generations of PLC’s based on National Semiconductor and later on Siemens 16 bit
microprocessors. In both cases I ported the OSCAR design to these processors. The PLC’s produced had
built in networking and were very fast and reliable. The colleagues working with me particularly liked the
modular structure of the OSCAR system. In 2018 I was most gratified to learn, that one of the colleagues
working with me on the PL.C’s was still using the OSCAR design for industrial control computing at another
large German manufacturer.

For the 50" anniversary I have taken on the job of scanning the typed manuscript of the thesis using modern
optical character recognition (OCR) to produce a LibreOffice (ODF) document. I had to do hardly any
corrections — OCR is that good now.

I hope many programmers will still gain some useful insights into an alternate way to structure interrupt
systems and task scheduling in a way which is fast and clear to follow.

John E. Wulff

Bowen Mountain, Australia
January 2019

PS: Only minor changes and spelling corrections have been made for this copy.

1 INTRODUCTION

The use of digital computers in a real-time environment imposes many restrictions on programmers which
are not encountered in conventional data-processing. These restrictions can be traced to timing problems in
making the computer keep pace with the real world. The tendency of modern computers to become faster and
faster tends to alleviate such problems, but this tendency also opens the possibility of using digital computers
in more complex high speed systems. In the long run it is important that the real-time computer programmer
has at his disposal a programming system which handles details of synchronisation with events external to
the computer and breaks up execution of segments of program in such a manner that all timing requirements
are met.

This thesis will analyse a number of schemes presented in the literature for achieving such aims. It will then
outline a system which combines what are felt to be the best features of systems in the literature. From this a
working Operating System has been developed.

This Operating System has been used. in two computer control systems, one of which is operational at the
time of writing and the other is nearing completion. It has been called OSCAR which is short for "Operating
System, C.S.R. Automation Research". The work was carried out at the C.S.R. Research Laboratories in
Sydney, Australia.

The use of multi-task systems has now become accepted although at the beginning of this work it was quite
rare. Many publications stressed the pitfalls of concurrent operations, pointing out that the sequence in which
instructions are executed cannot be defined and hence not tested'. Wegner has overcome this problem by
introducing the concept of the 'instantaneous description’?. The interrupt facility of computers was seen as
the main stumbling block, because it effectively inserts instructions at unforeseen points in a program'. To a
lesser degree data channel transfers modify memory in parallel with program execution. This does not appear
to cause as much alarm, possibly because of the well-defined hardware sequence which controls these
transfers. Later I will endeavour to show that most interrupt controlled data transfers can be made to operate
just like hardware controlled data channel transfers.

A point which I see as a major stumbling block in coming to grips with the interrupt system of a computer is
that there is a popular misconception of its function when it comes to incorporating it in a programming
system. Because the action of trapping to another location at some indeterminate point in a program forms
the major departure from normal operation, it is often forgotten that an interrupt is only the reply by some
external device to a previous activation. Instead interrupt handlers are often structured as if interrupts
occurred completely spontaneously. This manifests itself in

interrupt and device handlers and sometimes even complete reeevrr |
systems, which start at the interrupt locations and work their »
way through a massive number of switches which have

recorded the mode of the system at any point in time>.

Figure 1 illustrates such a system which is characterised by a

tree structure whose root is the interrupt location and whose

branches are open ended. They consist of segments of program

which terminate when no further computing can be carried out

until the next interrupt signals that new data is available. Then

the whole maze is traversed again to locate which segment o) 4
must be executed next. When an attempt is made to introduce ' ReTven Frort Tnaagllay
multiple interrupts into such a system the whole concept breaks '

down. Most serious systems therefore do not follow the above F?}j

2

approach completely, but nevertheless it stands as the basic philosophy of most systems and appears to guide
the thinking of most programmers in dealing with the interrupt.

It is my thesis that if multi-programming systems are structured in such a way as to reflect the simple fact
that an interrupt is a signal from a peripheral device that an action initiated by a computer program is now
completed, then the way is open to a clear and orderly system which can be debugged simply, and whose
operations can be tested rigorously.

This problem has been overcome by the introduction of Synchronising Primitives. Primitive operations have
the property that only one at a time can be executed by concurrent processes. These operations will be
described in detail in a later section.

1.1 Real-Time Systems

For this thesis a 'real-time' environment is defined as one is which the time scale of computer operations is
critical and is dictated by the requirements of an environment external to the computer’. The 'response time'
of a system becomes important in the real-time context. Adequate response times vary for different
applications. Examples quoted in the literature are a few milliseconds for radar scanning systems, three
seconds for Airline reservation systems and five minutes for controlling a paper mill.

One of the specifications for the operating system outlined in this thesis was a response time of substantially
less than one millisecond for certain services. This response time is not required for all services. What is
important is, that the priority of a service program and the time to execute service programs at different
priorities is such, that a satisfactory response time for a given service can be achieved.

1.1.1 Occupancy
To visualise the interrelations of a number of computer programs the concept of computer occupancy is

useful.

Time to service an event
Time bettween events

Occupancy =

If we assume that a computer is servicing two types of events simultaneously, Type A at 1 ms intervals and
Type B at 100 ms intervals. If we also assume that the time to service each of these events is 60 ps and 6 ms
respectively. The occupancy for either type of event is 6% and the occupancy for both together is 12%. If the
Type A event causes the highest priority computer response and the Type B event the second highest priority
response, it is easy to see that the response time to the-.Type A event is 60 ps. For the Type B event the
response time is 12 ms which is made up of the 6 ms actual servicing time interspersed by 100 higher
priority services at 60 s duration, totalling another 6 ms.

-
-
-
-
~

Type A 5 g Tt e e
Sei-wu———--—-———-—-—«-vg‘-g

g |
]
{
!
!
|
1
|

Type B J b
Service e | -t-——ni-——ﬁ-m* e -
fr 4 is ggvrcﬂt

Service
l.'tn“ﬂ'upk&(
b)r A

Ser v:'c;nj - Lypes o/ Eveuts
Fr'j. 2
If events activate processes which are executed at different priorities, we can define the folloWing terms -
Time between events activating process i =te;
te can be estimated from an analysis of the application when designing the system.
Time to execute process i =tx;
tx can be estimated when writing the code for process i by counting instructions.

The following relations summarise the previous discussion if we assume processes are numbered in order of
priority:

Occupancy of process i

0="—"
te;

1
Total occupancy of processes 1 to n
n
tx.
TO, =), —
i=o fe
Response time of process n
tr,=TO, *te,
We can now quantify the definition of a real-time system and state that in a real-time computer system the
Total Occupancy of all processes in the system must be less than unity.

By estimating te and tx. while programming it becomes fairly obvious which pieces of code should be made
to run efficiently. In programming one often looses sight of the relation of a particular piece of code to the
whole program. The above concepts have proved to be helpful as a guideline while programming real-time
systems.

1.1.2 A typical system

To highlight some of the features which are required in a real-time operating system and to illustrate some of
the time constraints which are encountered in practice, a typical system will now be described. This system is
a computer controlled installation for blending and metering liquids, such as petrol. At a distribution depot
road tankers are filled with petrol. Because different types of petrol are marketed, various additives must be
incorporated in the correct proportions as the tankers are filled. The amount of petrol, the grade and the
proportion of each additive for a particular load are entered into the system at a keyboard terminal. This is
done as orders are received, and may be several days in advance of actual delivery. The keyboard terminal
must respond to a number of questions typed by the operator and its functioning should be independent of
the actual filling of tankers. It may be necessary to allow for more terminals if the amount of work requires
it. Again terminals should appear to be independent of each other.

A tanker filling station consists of a number of valves or pumps which allow different grades of petrol to
flow into the tanker. The flow is measured with an accurate flow-meter. Such meters produce pulses, one
pulse for every increment of volume which passes through the meter. These pulses interrupt the computer
which counts them to integrate the flow. By arranging to turn off the flow when a given number of pulses
have occurred, a given volume of petrol can be metered out. In practice temperature compensation would be
desirable to convert this to a mass flow. To incorporate a given proportion of additives, a fixed volume of
each additive is pumped into the petrol for a computed number of increments on the main flow. If several
additives are required this produces quite a complex sequence of pumping actions.

> A COMPUTER,
b AMAPITIVES

L

PETA il N
eese ,/ !; NAN

rob \\N ‘\
—4 d] i

: P FLowd ~
/ Al METER ADS Brive METER G
Pumrs

! .
fia. 3 LiQuinp BLemdING SYSTEM m__wﬂ

Typical flow-meters with the required accuracy would interrupt the computer 2,000 times a second. Thus te

.

in the worst case is 500 ps. In the OSCAR system interrupt service for flow-meters(and the real-time clock)
is 15 ps. Occupancy for each flow-meter (and the real-time clock) is thus 3%.

This shows immediately how many such flow-meters could be serviced in parallel. 3% is a reasonable figure
and would allow the implementation of up to 10 filling stations giving a worst case occupancy of 30%.
Interrupt handlers in other systems have a typical tx of 100 ps. This would immediately make the Occupancy
for one flow-meter 20%. This would make the time-sharing of more than 5 flow-meter processes impossible.
In practice something might be left over for the rest.

The proposed blending system is to be designed with 5 outlets. Thus 5 main flow-meters are required. Also
the computer programs for each outlet would be very similar, since each outlet is essentially the same. The
only difference is in the actual flow-meter and valve. Each outlet has its own set of these. This situation is
best handled by what is known as re-entrant programs. Such programs may be active on a number of

5

different instances of the same job at the same time. Thus a system to handle such work should cater for re-
entrant programs. The same could be said for more than one terminal.

These could also be handled by multiple activations of the same. re-entrant program. OSCAR allows
implementation of such systems.

1.1.3 Difficulties with Uni-programming

Uni-programming is the way most people program a computer. A program is seen as a single thread of
instructions. All activities in the outside world will have to be brought into this single thread. This works if
external events are initiated by the same program and if the computer can afford to

be idle while waiting for such an external event. This is usually wasteful and in the case of such demanding
events as flow-meter pulses, it is hard to visualise a single thread of instructions keeping up with more than
one pulse train.

In general such diverse activities as keeping up with a keyboard terminal and running a filling station as
described in the last sections are difficult to join into a single program. Yet this is what many people are
doing, and it is very hard work.

1.1.4 Multi-processor Systems

Some writers have suggested using more than one computer, one for each major job in a system. I agree with
this approach if occupancy considerations make it necessary. Nevertheless, the need for some
communication between the separate computers is still necessary, and an overall operating system is still
required. Thus to use separate computers just to make programming easier is futile. The same can be
achieved with a multi-task system such as OSCAR.

1.1.5 Time-sharing

Time-sharing computer systems as distinct from real-time systems are characterised by the fact that in the
limit there are no real-time constraints in relation to the users as far as the computer is concerned. This
means that there are a number of terminals connected to the computer and these interact with the computer
and in the long run they share the computer equitably. In the short term nothing is lost if the job for one
terminal is held up. Only the user's peace of mind and patience are tried while waiting for a printout which
will come eventually. In practice this means that users may prefer to switch to a better system if the grade of
service is poor. In such instances the concepts of real-time programming outlined in this thesis could be very
useful to design a system which will give prompter service.

The starting point would be to classify the human user like any other real-time device. Apart from this the
programming for many of the peripheral devices of a time-sharing system such as disks and line-printers can
be treated in isolation if a real-time approach is adopted. Even multi-processor systems can be planned in this
way, opening the way to a modular upgrading of a facility as its usage increases. Such an approach has been
adopted on the latest Burroughs systems.

1.2 System Structure

To achieve adequate response times from a computer system while maintaining total occupancy below unity
it is useful to employ a structure in which the total job is divided into a number of sections. Each section
which we have previously called a process is required to service a particular event or series of events. For the
programmer using an operating system such as will be outlined it is useful to regard processes as
independent of each other except when deliberate interaction is introduced.

1.2.1 Process Independence

Such independence can best be visualised in a system in which each process is carried out on a separate
computer. It then becomes a fairly simple matter to devise a program to carry out the servicing of a particular
event. Once this service is completed the computer only has to wait for
the next occurrence of the event to repeat the cycle. Such "Wait loops"
are common in programs using unbuffered input and output from a
single Teletype. Synchronisation with the device is achieved by testing
a hardware flag and branching back to the test instruction if the flag
indicates that the program should not proceed.

Such a scheme whose flowchart is shown in Figure 4 is easy to lommm DEVICE”
understand by the average programmer, but it would be completely
unacceptable in a real-time system.

FiG. 4

Since the operation of repeatedly testing the hardware flag is not really useful except in the instance when
the flag finally sets, it is possible to specify a system in which the testing of the hardware flag is replaced by
a call to an operating system which has the effect of suspending the process which contains the call until the
flag sets. During the period of suspension lower priority processes would be able to carry out their work.

Looked at from the outside a process using such a system call would be indistinguishable from a timing point
of view from one using continuous testing of a hardware flag. More importantly the program using the
system call is virtually unaltered. Only the hardware flag test loop has been replaced by a system call which
we shall call the "WAIT" call. This is the first of four synchronising primitive operations provided by the
system.

1.2.2 Function of the Hardware Interrupt

Most digital computers have what is commonly called an interrupt facility. This facility was initially
designed to allow overlapping of computing with Input/Output. This can cause serious problems to unwary
programmers. It is important to ensure that only a well defined set of registers is modified during Interrupt
Handling.

1.2.3 Instantaneous Description

The concept of 'Instantaneous Description' was used extensively in developing this system. Wegner defines it
as the contents of all registers in the processing unit and memory of the computer at a given point of the
computation®. Obviously it is inevitable that any form of interruption will modify such an instantaneous
description. It is therefore necessary to settle on a reduced set of registers to which normal user programs are
restricted leaving the remainder for interrupt service programs. It is then possible to avoid modification of
the reduced instantaneous description.

The setting of a hardware flag marking the completion of some external operation is usually coupled with an
interrupt. The interrupt can thus be regarded as the signal to continue operation of a process which has issued
a WAIT call for that external operation. In a typical real-time system there are many peripheral devices
which can interrupt the computer. It is the function of the INTERRUPT HANDLER program to establish
which device is currently interrupting and to invoke the appropriate DEVICE SERVICE ROUTINE. Since
all interrupts, whether they belong to high speed or slow speed devices have to pass through the interrupt
handler, it is important to make this routine as short as possible to reduce system overhead which can be
regarded as an unproductive form of occupancy. The latest implementation of the operating system described
in this thesis carries out these functions in six computer instructions.

1.2.4 Timing Considerations

Communication with peripheral devices is a prime requirement in computing. This communication is
different from ordinary program flow because the speed of peripheral devices is often based on mechanical
movements whereas the messages can be received and transmitted by computers at much higher speeds. This
problem is more serious in process control application where the devices that a computer has to
communicate with are usually not designed to be computer compatible. Despite this it is the generally slow
speed of peripheral devices which makes multiprogramming feasible. The average time to service a device
(tx) is usually much less than the average time between steps of a device (te). Thus the occupancy for
servicing the device is less than unity and the remaining computer occupancy can be shared among other
devices.

This view of looking at the time scale of operation in the computer purely from the point of view of the delay
caused by devices is not always valid but it is an important consideration in all systems which are
Input/Output bound. In OSCAR it provides the means for fitting service for all devices into the available
time. This implies that there is a priority structure which gives precedence to devices with high rates of
activity and allows their service routines to interrupt the service for slower devices. The allocation of
priorities is the responsibility of the users of this system. The exact choice is not very critical unless the total
occupancy approaches unity in which case the overall interaction of the different sections has to be
considered most carefully. The system at this stage does not cater for more than one process which is
completely compute-bound. This has not proved a disadvantage in the applications handled so far. It would
be a fairly easy step to execute a number of compute-bound processes on a timed, round-robin basis.

1.2.5 Device Service Routines

The structure of the Device Service Routine in the system is a software extension of the hardware. The
nucleus of the system only provides certain primitive operations which are not normally provided by
computer hardware but which can be regarded by programmers as hardware functions.

Use of these primitives provides a uniform method of generating device service routines which are both
efficient in terms of occupancy and easy to understand by the user. It was felt absolutely essential that the
user could develop his own device service routines in view of the varied nature of devices encountered in
process control situations. Also it was considered important that the user should not be forced to follow a
very rigid pattern to implement his ideas.

For the above reasons the philosophy of the Device Service Routines found in a number of Real-Time
Operating Systems has not been followed. The implementation in 'RTOS’ " is typical. In that system a call to
perform I/O is accompanied by five parameters which specify a logical device number, a device control
word, a data pointer, a data item count and an error return point. Such a call is very useful for the
transmission of groups of characters or words of fixed length but the overhead in using such a call for
simpler operations, e.g. transmitting one single character to a device, is very high both in execution time and
in lengthy calling sequences which a user has to write. Execution time becomes very high because each time
the call is executed the full list of parameters has to be interpreted before the action required can be carried
out. Nevertheless such a call can be implemented in OSCAR using the synchronising primitives and this has
been done for a project involving a number of on-line display terminals.

The structure that has been chosen is based on the criterion that activity both inside and outside the computer
can be broken up into intervals whose transitions constitute 'events'. Particularly the actions of peripheral
devices can be thought of as a series of events separated by periods of internal activity whose details are not
of interest to the programmer.

8

The usual hardware method of synchronisation with computers follows this principle. A device is usually
started by a pulse from the computer. This marks the beginning of a cycle, which is an event. The completion
of the cycle is another event which is signalled to the computer by the device sending out a pulse. Since
pulses are transient phenomena, the pulses in either direction usually set a bistable device or 'flag'. In the
Nova range of computers the symmetry of this situation has been embodied in the design of the standard
interface, shown in Figure 5.

In this type of structure, which is commonly called the DONE

'Handshake' system, the 'Device' is activated by the
: . : s P DEVICE

steady state signal put out by the 'BUSY' flag which is

set from the computer. When the 'Device' has completed

its cycle, it sets the 'DONE' flag which signals the | 7

computer to do its share in continuing the action. From [}

INTERRAPT COMPAUTER

the point of view of the computer it starts a device and ¢, mpurea, T
then waits for the answer signalling completion. I o
Similarly from the point of view of the device, it signals [STARY DEVICE
completion of a cycle and then waits for a signal to @\,57
carry out another cycle. The situation is quite

symmetrical.

Fla. s

The general strategy can also be implemented in the software of the computer. This part of the operating
system can be thought of as a software interface between the computer I/O system and the user programs.
Nico Haberman points out that a pair of hardware flags such as 'BUSY' and 'DONE' as in Figure 5
correspond to a software pair of flags operated on by primitive operations 'WAIT" and 'SIGNAL', which he
defines®. These have not been used in OSCAR but they perform similar functions to operations in this
system. He proves that two such flags are necessary and sufficient to synchronise communication between a
program and a peripheral. He then draws the conclusion that there is essentially no need for a supervisory
process through which all device requests are channelled and which is the only one that issues commands to
the device. This course has been adopted in OSCAR.

In implementing this strategy it is not necessary to stick precisely to the hardware functions for a device. For
example, it is possible to implement a software interface with a buffer for a device which only transmits
single bytes, such as a Teletype reader. In this case the user makes a call on the operating system to initiate
transfer of a number of bytes to the buffer. A buffer address pointer and buffer counter value must be set
during this call. The user then waits until the last byte has been transmitted from the hardware. All
transmission of bytes and storing of them is done in a device handler program which is activated at intervals
by interrupts from the device. When the last byte has been stored the handler, which constitutes the software
interface, signals the user to indicate to him that the event that he has been waiting for has now occurred.

This type of structure is analogous to the usual implementation of hardware interfaces for devices with very
high transfer rates such as fixed-head discs. A hardware instruction presets the buffer address pointer. The
buffer length is usually fixed. Another hardware instruction sets the disc address and initiates the transfer. As
each word is received from the disc, it is stored in the computer memory through a hardware facility called a
Data Channel or Direct Memory Access (DMA). When the last word has been received, the hardware causes
a conventional interrupt to occur which in this case signals that a full buffer has been transferred.

In the software implementation, an analogous device interrupt service routine which is activated by each
interrupt from the device takes the place of the Data Channel cycle. The interrupt when the buffer is full is
replaced by the operation called 'POST". This operation is the second synchronising primitive of OSCAR. It
marks the occurrence of an event.

9

For each interrupt (1 character transmitted) except the last one, this Interrupt Service Routine typically steals
about 12 instruction times from the program which has been interrupted. This is broken up into 2 instruction
times for the interrupt hardware cycle, 3 instruction times for the Standard Interrupt Service which has to
determine which device service to branch to, 4 instruction times for the Device Interrupt Service routine and
3 instruction times for the Return From Interrupt which restores the interrupted program.

Twelve instruction times for that part of the device service which is repeated many times is felt to be the best
than can be done on the Nova computer on which these concepts were implemented. For other computers
with more powerful interrupt hardware this time may be reduced and it is felt that time saved in repetitive
interrupt servicing is always worthwhile.

Having disposed of the middle section of Device Service routines, we can now look at the beginning and
end. The beginning must originate in a 'user' program which requests a transfer of one or more characters to a
certain buffer. Apart from setting the buffer pointer and buffer counter, the device must be started to fetch the
first byte. It is this first action which causes the first interrupt when the device has completed its first cycle.
In the present implementation hardware 1/O instructions are allowed to start the device. In later
implementations it is proposed to use hardware which does not allow users to execute such instructions and a
form of Supervisor Call will have to be used for initiating all I/O. A typical form of I/O call is shown in the
code below. This code also shows the termination of the transfer.

Users, having initiated an I/O operation usually want to suspend their program until the transfer has been
completed. This is achieved by the 'WAIT" call to the operating system. The "WAIT" call has one parameter
which is the address of a one word location called an 'EVENT CONTROL WORD'. In the example
considered so far the transfer of the last character, which is detected by the Device Interrupt Service shown
in Figure 5 results in POSTing the same EVENT CONTROL WORD. The WAIT and POST operation are a
pair which achieve synchronisation, while the EVENT CONTROL WORD acts as a pair of flags which carry
out a function similar to the BUSY and DONE flags in the hardware interface shown in Figure 5. A more
detailed description of these functions will be given in Section 2.

To summarise the operation of the Device Service Routine: a user programme makes an I/O request;
interrupts activate the Device Service Routine when required and finally the last interrupt allows control to
return to the User.

NOTE

* The user program need not wait for completion of the call immediately the I/O request is made. It is
possible to carry out further computation after the I/O request is made and then wait for completion
of the transfer when the new data is required.

* In the case where transfer of only one byte is requested, the sequence reduces to the I/O request
followed by a WAIT call. The first interrupt signals completion of the transfer and POSTs the caller.

The following code shows a routine to get a single character from a Teletype and the associated Interrupt
Service Routine in Nova assembler language.

; GET CHARACTER ROUTINE FOR TELETYPE ;
; CALLING SEQUENCE:

JSR GET
next statement

GET: STA 3,6 ; SAVE RETURN
WAIT ; WAIT FOR TRANSMISSION OF
TTIEC ; THE NEXT CHARACTER

10

SUBC 3,3 ; CLEAR ACCUMULATOR 3

STA 3,TTIEC; CLEAR TTIEC

DIAS 0,TTI ; READ CHAR FROM TELETYPE
JMP @6 ; RETURN TO USER

; THE FOLLOWING WORD IS THE 'EVENT CONTROL WORD' LINKING THE TWO SECTIONS
TTIEC: 0 ; INITIALLY CLEARED

; TELETYPE INPUT INTERRUPT SERVICE

; AFTER SAVING ACCUMULATOR 3,

; THE MAIN INTERRUPT HANDLER BRANCHES TO 'TTIS'
; WHEN A 'TTI' INTERRUPT OCCURS

TTIS: NIOC TTI ; CLEAR THE DONE FLAG TO
; PREVENT FURTHER INTERRUPTS
.POSTI ; POST OR SIGNAL THE USER
TTIEC ; VIA THE EVENT CONTROL WORD

; SIGNALLING THAT THIS CHARACTER IS READY

This interrupt service programme appears somewhat trivial but it allows practical time-sharing or multiprogramming which is quite
efficient, while maintaining the simplicity of structure of the Get Character routine using flag testing,

; BUSY WAIT GET CHARACTER ROUTINE FOR TELETYPE ;

GET: SKPDN TTI ; WAIT FOR DONE FLAG TO SET
JMP 1
DIAS O,TTI ; READ CHARACTER
JMP 0,3 ; RETURN TO USER

Further ideas on this topic will be taken up in Section 2.3.4 dealing with the synchronisation primitives
WAIT and POST.

1.2.6 Processes and Tasks

The word Process has been used loosely in Section 1.2.1 to talk about a computation. E. W. Dijkstra has
written a complete monograph on sequential processes® and the co-operation between them without ever
giving a formal definition of a process. His processes appear to be Algol programs with curious appendages
called "parbegin" and "parend", which suddenly endow these programs with a capability to exist in parallel.
Lampson® summarises the characteristics of a process thus:

"A process must have, at least conceptually, a processor of its own to run on".

He also speaks of a "process or a processor executing a program. The process is the logical, the processor the
physical environment for this execution".

To allow this implementation of more than one logical process on a single processor, these processes must be
multiplexed or time shared on the processor. A special data structure is used to carry out this function.

This data structure will be called Task. This Task concept is used in OS 360 and many of the concepts which
follow have been taken from that system’. A Task consists of block of memory in which all those registers of
the processor which it must share with other Tasks, are saved and a program which will be executed when
the Task is run.

11

The block of memory in which the processor registers are saved is
called the TASK CONTROL BLOCK (TCB). The Task Control
Block holds much of the variable part of the instantaneous
description mentioned in Section 1.2.2.

Ted

In OSCAR the registers saved in the TCB are the four
Accumulators, the Carry bit, the Program Counter and eight
memory locations. The TCB also contains two other words which
are used by the synchronising operations. Plocray

Closely connected with the instantaneous description of a task is the
initial representation. This is the static value of the instantaneous
description before execution is started. The initial representation is
important for the practical implementation of a system. It allows
initialisation of each task to be defined by the programmer during
the program assembly phase. In OSCAR the initial representation
follows immediately after each TCB. A program called SYSTEM
START copies the initial representations into each TCB and then enters the task scheduler. This feature was
not included in earlier implementations. Here the Initial Values of the registers of the Task Control Block
were assembled as constants into the space occupied by the TCB. As a consequence the system could not be
re-started once it had been run unless a complete reload was done. This proved tiresome in the real-time
situation and the Initial Values were stored separately as part of the Task.

Fl'a. 8 A TASK

The ability to re-start a system has a more important advantage in systems for controlling machinery. Such
systems are usually provided with a Task whose execution checks the operation of all the parts of the
computing system as a low priority activity. If such a check uncovers a fault, it is often sufficient to record
the occurrence of the fault, give an alarm and then re-start the system, hoping that the fault does not occur
too frequently. This scheme allowed the successful operation of a computer control system in a remote
location, despite the existence of a minor fault which was rectified during a subsequent regular visit.

1.2.7 Task Control Block

The most important register that must be saved in the TCB and for which an initial value must always be
provided is the Program Counter of the processor. The initial value of the PC points to the statement in the
program associated with the Task at which execution will start. Thus each Task written by the user has its
own starting point which is normally associated only with independent stand-alone programs.

The provision of space for other registers is optional. On the Nova very little computing could be done
without the 4 Accumulators and the Carry register so space is provided for these in the TCB. On top of this,
certain memory locations are also saved in the TCB for each Task. Thus programs may use these as private
memory locations which will not be disturbed by other Tasks using the same locations. In the first
implementation of the system, only 2 such private locations were provided. These were chosen as Location 6
and 7 in the memory. (Example: program "GET" Section 1.2.5 uses Location 6 to save an accumulator). This
system was tailored for speed and thus no other private registers were used. The latest implementation uses 8
private locations. Two of these are auto-incrementing and two are auto-decrementing registers. These
registers are a hardware facility provided in only a few locations in low memory on the Nova. If these
locations were not made private, this hardware facility could not be used effectively in tasks. The provision
of private locations makes the writing of re-entrant programs much easier. This is very important in a multi-
programming system. Re-entrant programs may be executed by a number of tasks simultaneously. They must
have the property that they do not modify themselves. The private locations or a work area pointed to by a
private location are then the only memory locations which a re-entrant program may modify.

12

The Floating Point Interpreter supplied by the manufacturers of the Nova is fully re-entrant and only requires
private locations 6 and 7 and a work area whose address is in location 7 for each Task calling on the Floating
Point Interpreter. This means that every task not only has its own pseudo-hardware processor but also its own
floating point processor.

Floating Point Accumulators are stored in the Floating Work Area which can be regarded as an extension to
the TCB. The TCB stores 3 other registers which are used by the operating system to schedule tasks. One is a
Hardware Priority Mask which determines which device may interrupt the Task when it is active and which
may not. The remainder are a Wait Count and a Back Pointer. The Wait Count is used when a Task is
suspended either as a counter of how many events should be posted before re-activation, or as a link word,
linking a number of suspended tasks into a queue. The Back Pointer gives a backward reference to the entry
for this task in a list of all tasks. It is never modified.

A Task is identified by the address of the first location of its TCB. In this implementation 26 external names
have been defined which range from TCBA to TCBZ. If the TCB addresses are given one of those names, the
TCB will be put on to a Task Queue when the Operating System is loaded. The Priority of Tasks is
determined by the ordering in the Task Queue. TCBA is always loaded first, TCBZ last. Thus a priority can
be established by naming tasks with TCBA for the highest priority task and TCBZ for the lowest priority
tasks and all others in between in alphabetical order. The priority of tasks means that if two tasks are ready
for execution, the operating system will schedule the highest priority task first and execute it until it suspends
itself or it is interrupted, and a higher priority task is activated as a result of the interruption. A lower priority
task can only be executed when all higher priority tasks are suspended. This is a simple task-scheduling
strategy which may be augmented in future. At present it satisfies the needs of the systems it is to serve.

1.2.8 Task States

When Tasks are executing they may exist in a number of different states. Only one of these states require a
processor. OSCAR distinguishes three states which are described in the following section.

1. Active State: A task is active when a central processor is executing instructions in a program
belonging to the task with data also belonging to the task, or shared with other tasks. To mark this
state the address of the currently active TCB is stored in a known location (ATCB).

2. Ready State: A task is in this state when it is ready to use a central processor but is not active
because higher priority tasks or system programs are using all physical processors.

3. Suspended State: A task is in the suspended state whenever it must wait for the occurrence of an
event. Such an event may be the completion of an Input/Output operation, or the execution of one of
the synchronising macro-instructions in another task which can re-activate a task.

Some systems'® ' recognise another state called the Dormant state which is said to be a state which is none

of the previous three states. This is a state in which the Task either does not exist yet or the Task has been
deleted. In the present implementation which does not cater for dynamic tasks, such a situation cannot occur.
The nearest that a user could approach this state is to cause a task to be permanently suspended.

1.2.9 Task Implementation

It should be pointed out here that the method employed in generating tasks in a user system is to reserve
space for the Task Control Block and give this space one of the names TCBA to TCBZ, consistent with the
priority required. Immediately following the Task Control Block the user must provide an Initialisation
Control Word (ICW) followed by a list of Initial values for the TCB. In particular the initial value of the

13

program counter in the TCB must always be given and should have the label of the first instruction to be
executed in the task.

This method of generating a task is a static one. Tasks are generated with the programs through the assembler
and loader.

1.2.10 Concepts related to Tasks

Some thought has been given to an implementation using dynamic tasks. In such a system one task may
create another task and cause it to be executed. In the language of OS 360, one task "attaches" another task.
Conway and others® * have used the word 'fork'. The concept of 'forking' as seen by Conway is shown in
Figure 7 He explains that the 'fork' and 'join' in flowcharts have their counterpart in the FORK and JOIN
instruction

He defines as follows: :
{ 27 I
- ; . ; ; ; FoRK
"FORK is simply an instruction with two successors. It is written A B
and acts like a branch instruction".. The next statement will be .
executed as part of the current task but the location which the 'fork’
branches to will be executed in parallel as part of a new task
created at this point. e 7 FoRK/3 orn

To implement such a scheme a new Task Control Block has to be obtained from a 'pool’ set aside for this
purpose and the forking point entered into the TCB as its PC. It is desirable to copy the rest of the current
TCB into the newly created TCB so that the states of all the registers of the new task are the same as those of
the current Task at the point of forking. RTOS which implements such a scheme also allows the specification
of a priority for the new task. This is very important for creating real-time user systems.

The OSCAR System was written and working (May '70) 6 months before the preliminary specifications for
RTOS had been seen by the author (Nov. '70), and 18 months before a full write up and source tapes and
listings were obtained (Nov. '71). Certain similarities such as the abbreviation TCB, and the virtually
identical implementation of the timed event queue (see Section 2.7.1) must stem from the common
background literature and the likelihood of similar implementations of the same problem on the same
computer.

The differences in implementation and overall strategy are of significance also and I would here like to
justify my stand that a system using static Tasks is more useful to the average programmer for small real-
time systems than dynamic tasks implemented by means of FORK instructions.

The biggest limitation of the FORK instruction is a conceptual one. Conway states that it should be
conceived as a branch instruction. This is a realistic requirement in the implementation of algorithms in
which parallelism may be exploited. The example usually given is one of the matrix manipulations which are
obvious candidates for parallel execution. Conway® also specifically introduces the FORK instruction to
allow the programmer access to a number of physical processors. Thus I see the FORK instruction as useful
where a programmer wants to code a single problem in such a way as to exploit parallel execution or
multiple processors and thus gain a speed advantage.

However, the problem usually facing the programmer in real-time systems (single processor only) is the
requirement to code a number of separate sections each of which will probably run indefinitely. These
sections can and should be isolated from other sections to allow them to be run and tested separately. The
Static Task fulfils this requirement. Coding within the task is the same as coding for a free-standing program
which has a full processor to execute. Communication with other Tasks is via well-defined Macro calls to the
operating system. None of these resembles a branch into another Task.

14

It has been argued by Dijkstra® that the branch instruction in Algol, the GOTO, is unnecessary and spoils the
block structure of many Algol programs. In a similar way a FORK (GOTO) into another Task is even more
distressing because it tends to hide the true nature of a Task. An actual branch into another task is a
meaningless concept because only the Program counter has been modified. Both before and after the branch
have been executed, the same Task is still active. To appear to allow this situation in the special case of a
Fork tends to dilute this fact.

The popularity of the Fork instruction probably stems from the fact that programmers are not used to
thinking about their systems in a truly parallel sense. Because programs are sequential structures all the way
except for the actions of peripheral devices, trained programmers tend to look at systems this way too. The
present higher level languages only emphasise this situation because they take out I/O programming leaving
only a single thread program. PL/I is the only well-known higher level language which recognises parallel
processing but unfortunately the implementation is by the 'Attach' call which is the same as a 'Fork'. This
appears to give parallel processing a slightly sequential look.

The suggestions for a parallel processing capability for Algol®> made by Dijkstra is another approach to this
problem. He suggests that a series of Algol statements be surrounded by the special statement bracket pair
"parbegin" and "parend". This is to be interpreted as parallel execution of all the constituent statements. He
calls the construction a "parallel compound" which is to be regarded as a statement. Initiation of a parallel
compound implies simultaneous initiation of all its constituent statements. Although it is feasible to
implement real-time control systems using this version of Algol it was initially thought of as a means for
implementing algorithms which contain sections that can benefit from parallel execution.

1.2.11 Ideas taken from Hardware Design

My own approach to this problem has been guided largely by an education in engineering and some
experience in the design of relay switching systems and later electronic switching and control systems. In
this area everything is parallel. Every little building block goes about doing its small function all the time,
reacting, with a finite delay, to its input signals and transmitting the result via its outputs to other blocks.

Similarly larger units can be thought of in a similar way doing their more complicated function at the same
time as other units are doing theirs. It is surprising that computers which are devices of essentially this
structure do not inspire programmers to emulate this structure.

It is always a great problem in switching system design to produce a system which is going to work without
too many design faults or 'bugs' as computer people call them, when the system is built. A lot of work has
been done in the last 20 years to provide methods of analysis and synthesis which make this job easier.
Examples which come to mind are the Venn diagram or Karnaugh Map and the Huffman-Mealy method of
sequential circuit analysis' 8.

The greatest contribution to logic design has been the concept of strobing or clocking. This idea which was
originated in the late 1950's simplified logic design by allowing the specification of logic in terms of state
transition tables without worrying about the details of individual gate delays. Underlying the idea of strobing
is the idea of an indivisible operation. The transmission of the leading edge of a strobe pulse can be regarded
as a single indivisible operation and all elements which receive this strobe pulse are assumed to receive it at
the same time. The leading edge of the strobe pulse marks the boundary in time between two discrete periods
and any signal which develops in the second period is barred by the strobe pulse from causing any action in
that period. Only after another strobe pulse may these signals cause any change in the output. This scheme
would not work if the strobe pulses were divisible. Malfunction can occur in poorly designed systems if the
strobe pulses are not generated by the same source or the distribution network causes different delays.

15

The concept of strobing can also be applied to software design. The first requirements is an indivisible
operation. On most computers a machine instruction is an indivisible operation. This means that interrupts
can only occur between two instructions, not halfway between an instruction. Many computers allow
memory cycle stealing for data channels in the middle of instructions but this is not usually a problem. The
interrupt is the only external event which directly affects program flow. An example of a common divisible
operation which is often used and usually fails in an interrupt environment is the simple testing of a flag. In
many computers a memory location must be loaded into an accumulator before its contents can be tested. An
interrupt may occur between these two operations and before the flag is tested it may be altered, causing the
wrong action when the test is finally carried out.

An example of an indivisible test for a computer is the instruction:-

INCREMENT MEMORY AND SKIP IF ZERO

If an interrupt occurs before this instruction has been executed the flag in memory has not yet been modified
and execution after the return from interrupt will be correct. If the interrupt occurs just after the execution the
program counter will have the value appropriate for the flag in memory before the interrupt but the interrupt
routine will also see that the flag has already been tested. Unfortunately it is difficult to devise a scheme
which is foolproof using this instruction only.

To simulate more powerful indivisible operations the interrupt flip-flop must be turned off for a number of
instructions while the appropriate tests are carried out. Otherwise more elaborate instructions can be devised
which means altering the computer hardware. On some machines this latter approach may be carried out with
micro-programming.

In this thesis a number of indivisible operations for the purpose of software synchronisation will be
developed and their correct operation will be demonstrated.

1.2.12 Events

The concept of Events is fundamental to the development of this system. Events are defined as instantaneous
occurrences in the real time scale with the proviso that time is not continuous but is digitized into short
intervals by a computer. The shortest such intervals usually correspond to the execution of one machine
instruction. Events in the system environment always occur on the boundary between two such intervals. The
Nova device interface system allows this scheme to be used even with external events. A line from the
computer carries a clock pulse which is able to switch clocked flip flops after every instruction execution.
Thus the data inputs to these flip flops are synchronised to the computer instruction cycle. Their outputs
represent the same events as their inputs but they now fulfil the requirement that events should only occur on
instruction boundaries.

This scheme is used in the Nova to synchronise Interrupts with comPuTER [ey NTEQ@P"
the instruction flow. Clothem— | |\ REQUVEST
DATA ——urd O
CLoead | 1 { l { i t l 1 1 {]
! |] |
; i .
dAra Jf ¥l I [])
INT RER, _______W,,“X ! |

F:a § Nova le»ern)?l- 57 ndoro i gatron

External events can cause a computer to be interrupted or a computer program may test for the occurrence of
an event. In the latter case no special hardware synchronisation is necessary. The execution of the test
instruction will find the status line signalling the event either high or low, and the outcome of the test can

16

only be one way. The outcome is available at the end of the instruction execution. Again the event is known
to the process only in a discrete form. This way of looking at time is the same as in a sampled data system,
except here we are mostly interested in a binary value. An event has either occurred or it has not yet
occurred. The sampling process introduces quantizing errors into time estimates. The sampling rate of the
computer is of the order of 1 MHz for present day machines and this would not introduce a serious error for
most applications. But the number of instructions executed before an event can finally be acted upon is often
quite large. This introduces further and larger quantizing errors.

In the OSCAR system every attempt has been made to reduce this time, which is usually called the response
time, to a minimum. This has been done by avoiding the repetition of an operation where a single execution
of that operation is sufficient to carry out an action. Thus continuous 'polling' in any form is avoided if at all
possible. Secondly a conscious effort was made to optimise the code in critical routines for minimum
execution time.

This practice has been found worthwhile because it had a side effect of producing a clearer structure. It is the
author's view that the optimising of code can often be greatly assisted by modifications in the data structure a
program has to operate on. Thus the data structures in the OSCAR system are seen as the most significant
factor towards faster execution speed of the code.

Events in the system environment can also be thought of as the execution of particular instructions which are
of significance to other processes. In this operating system the only instructions which show any effect in
other processes are the synchronising primitives. One can then think of all the program which is executed up
to a synchronising operation as part of the one event. This is the sense in which Simulation languages deal
with events. Short programs are scheduled to take place at a given time. When this time arrives that program
is executed. The effect of this execution is to change the state of the system and possibly schedule a new
event. This scheduling takes place by sorting the new event into a queue of previously scheduled events
according to the system time when the new event is due. Then the system clock is set forward to the time of
the event on the head of the queue.

This system of scheduling was adopted for OSCAR with the modification that the system time now becomes
real-time as measured by an external oscillator. Whenever the next event on the queue is not yet due the
scheduling of events is suspended until the real-time has caught up with the time at which the next event is
scheduled. This system of scheduling events has the advantage that the real-time clock oscillator need only
increment one counter, yet events from many different tasks can be scheduled on the one clock queue.

1.2.13 Event Synchronization with Event Control Words

Event synchronization is the delaying of task execution until some specified event or events occur. The
synchronization has two aspects:

1. The requirement for synchronization is stated explicitly by the WAIT meta-instruction or is implied
by use of certain other instructions.

2. After the event has occurred, notice to the requesting task is given so it can proceed past the WAIT
point.

The notification required is performed by the POST meta-instruction. When the event is known to the control
program (for example, the completion of a read operation), the control program issues the POST. If the event
is known only to the user's program, the user's program must issue it.

As an example, the function of both tasks A and B in Figure 9 is to compute some value, display it, and then
proceed; the display to task A must precede that of B. Task A displays first, then issues the POST; task B
waits for A, and then displays its results.

17

Ll TAsk A Thsh &
A:l sA _.f | _.'
| COoMPUTE VA COMPYTE VIR
58t} compure VA e,
DISPLAY VA DISPLAY VA =
POST EV e : ;fgme,
____’_ fosr EV p— ‘i
B S8 {
g DISPLAY VR
S| CeMPUTE VB *
waT EV ‘
DISPLAY VB
3T | INTERTASK SYN CH-Ron SATION

A task may make several different requests and then wait for any number of them. For example, a task may
specify by READ, WRITE and DELAY meta-instructions that three asynchronous functions are to be
performed. When each of these requests is made initially to the control program, the location of a one-word
event control word (ECW) is also stated. The event control word provides the basic communication between
the tasks issuing both the original requests and the subsequent wait, and the posting agency (in this case, the
control program). When the WAIT meta-instruction is issued, the parameters supply the addresses of the
event control words corresponding to the requested services. Also supplied is a wait count that specifies how
many of the services (events) are required before the task is ready to continue. When an event occurs, the
following takes place:

1. The completion flag in the appropriate event control word is set by the POST meta-instruction.

2. A wait count test is made to see if the number of 'completion flags' satisfies the wait condition, and
hence if the task is ready.

After the task has again been given control, the programmer can determine what events did occur, and in
what manner. He does this (with instructions following the WAIT meta-instruction) by testing each event
control word.

Many requests for services may result in waits that are of no concern to the programmer - for example, GET
and PUT subroutines to get and print a character from a Teletype (1.2.3). In these cases, event control words
and wait specifications are handled entirely by the appropriate system subroutines.

The programmer is responsible for clearing event control words before each use. It is imperative that the
event to which an event control word pertains has occurred before it is reused. System subroutines will do
this before returning to the user. But it is important to clear all ECW's and this includes all system ECW's
which are used implicitly when initialising a Task. This allows a clean re-start to take place.

Programmers intending to make use of the event synchronisation facilities will find the following example
helpful.

A DELAY meta--instruction within program USER is followed by a WAIT for the completion of the input
event. Figure 10 shows the situation immediately after DELAY is executed.

* The event control word required for the operation is located in a main storage area belonging to the
task.

* Its address, "ECWA", was specified in the DELAY call.

18

* The appropriate input/ output program has queued the DELAY request and has placed the address
ECWA in the queue element.

;vaum Mopuil

ool il Tcék: TASK comTROL DELAY
A B
A
O] TCBE
Fie 1o :
AFTER. EfEN Tors Sk

OF ‘BDELAY’

Figure 11 shows the situation at the time the WAIT meta-instruction is executed. In this example, the
DELAY operation has not yet been concluded. The WAIT meta-instruction's parameters point to the event
control word location, and state that only one event is needed to satisfy the WAIT. The operating system, as a
result of the WAIT meta-instructions, performs these actions:

¢ Places the task control block address, "TCBA" in the event control word. Since this address is non
zero, it means that a task is waiting for the event to take place.

* Sets a 1 in the WAIT count indicator in the task control block to show the number of events being
awaited.

* Flags the task control block as being in the suspended state;

» therefore its task is no longer eligible to use the central processing unit. Passes control to the next
ranking ready task on the Task queue.

/ﬁwt

SuPERViSoR. MODVLE
BELAY

. T Ao
i| TcBeE SvsPERED o s it

. EBewd

l‘-‘aga »
AFTER ExegcvTion
of ‘wenr!

- &ewi: |O] TRE

Figure 12 shows the situation at the time the Real Time clock has advanced to the time specified in the
DELAY call, when the input/output supervisor performs the POST function. The following then takes place:

19

e The event control word is located from the address ECWA in the queue element in the input/output
supervisor queue, and the completion bit of the event control word is set to 1.

* The wait indicator (Bit 1-15) in the event control word is tested to see if a task is waiting, in this
case, it is, so the task control block wait count is decremented by 1.

* The wait count in the task control block is now 0, so the task is placed in the ready condition,
eligible to compete on a priority basis for CPU time. As soon as there are no higher priority ready

tasks, execution continues.
W‘vf'tv 1SoR MedvLs
DE LA

™ uwv-nog_f:t"'_—" Posr @ X

Ri© e

EvenT Queve

ﬂtfmma

Fiq.

J 2 Fewd; |4 o
AFTER OCe VR FNCE OF |NTERRVET :

AND ExEcution oFf ‘PosT'.

In the preceding example, the program reached the WAIT meta-instruction before the requested input/output
operation was completed. If the input/output operation had been completed first, the completion bit would
have been set and the program would have proceeded without any interruption when it came to the WAIT
meta-instruction.

Event synchronisation which employs the WAIT and POST functions, is used mainly in the management of
external resources by the Operating System. When a task requests a system resource, an event control word
associated with the task is placed on the appropriate resource queue. The Task may have to wait until the
resource is available. When it is, the Supervisor notifies the task by posting. It is important to note that only
one task can be waiting on a particular event (as characterised by a particular ECW) at the one time. The
event is unique to the posting agency and the particular task waiting for the event.

1.2.14 Critical Sections

Another form of event synchronisation is required, which allows co-operating tasks to share certain
resources. The resources that can only be shared in this way are called 'critical sections'.

This property applies to a large number of facilities. Their common characteristic is that only one task may
use them at one time. One example is program segments whose execution must be completed once they are
started before another task may start them. These are serially re-usable programs. Another example is a table
of data common to two tasks and modified by both. Care must be taken that once a modification is started, it
is completed before another task picks up the modified value. If access to such a table is not made a critical
section and modification is not completed the unmodified value may be picked up in another task leading to
erroneous computation.

20

If the programmer wants to control access to such a facility, he may create a queue of all tasks requiring
access, and limit access to one task at a time. Such a control action is provided in the operating system by
two meta-instructions. LOWER and RAISE. These instructions operate on data items called
SEMAPHORES.

The operations LOWER and RAISE are equivalent to the 'P' and 'V' operations defined by Dijkstra®. The
mnemonic origin of the names 'P' and 'V’ is obscure and the author found it so difficult to use these names
that the names LOWER and RAISE were adopted. Since the origin of semaphores must have been taken
from the context of mechanical railway signals, which have the function of excluding more than one train
(task) from a critical section, the names LOWER and RAISE seem appropriate.

Dijkstra has thoroughly investigated the problems arising from access to common variables®. This is a short
summary of the semaphore operations given by Wirth'.

It is postulated that LOWER and RAISE be the only operations applicable to variables designated as
semaphores. The observation of this postulate is crucial to the correct operation of tasks and may
only be disregarded during the initialisation phase of a task. The operation

RAISE (S)
increments the value of the semaphore S by 1. The operation
LOWER (S)

can only be performed when the value of S is positive; then it is decremented by 1. From this it
follows that LOWER may cause a delay of program execution until another task performs a RAISE
operation on the semaphore S. Thereby a synchronisation of the two tasks is obtained.

If semaphores are restricted to assume only the values 0 and 1, then the operators LOWER and RAISE
correspond respectively to the operators LOCK and UNLOCK described by Dennis and Van Horn'* , the TSL
instruction of Lampson® or DEQ and ENQ in OS/360’.

A critical section in OSCAR is coded as follows:
<statements before critical section>

LOWER
<SEMAPHORE ADDRESS>

<tatements in the critical section>

RAISE
<SEMAPHORE ADDRESS>

<tatements after the critical section>

The semaphore used to create a critical section must be a binary semaphore. The use of the general
semaphore which may have other values apart from 0 and 1 is very powerful and an example may be found
in the implementation of Double Ended Queues. (Section 2.3.2).

Many of the latest systems such as the VENUS operating system ' (See also section 3.3) use semaphores for
jobs for which Event Control Words are really more suitable. In particular the logical power of Event Control
Words cannot be matched by Semaphores whereas the queueing action of semaphores is not available with
Event Control Words. The action of Event Control Words and Semaphores is sufficiently different so that the
inclusion of both in an operating system is justified. 0S/360 uses Event Control Words and Binary
Semaphores. This is the only other system which uses two sets of synchronising primitives.

21

2 REAL TIME OPERATING SYSTEM 'OSCAR'’

OSCAR is a versatile multiprogramming system which extends the hardware of the NOVA family of
computers to give system programmers a flexible environment for implementing real time systems. OSCAR
is a highly modular system with a hierarchical structure which allows users to access the system at a number
of different levels. It is a fast system. Interrupt handling, task swapping and execution of the simple
synchronising primitive is carried out in an efficient manner. High speed systems may be built using only the
lower level functions. This requires more programming effort but has the advantage of producing very
compact and fast systems. Otherwise formatted output and buffering is available at the cost of a bigger and
slower system.

All functions are written as independent relocatable modules with global symbolic references. These are
provided on a relocatable library which is compatible with the Relocatable Loader or Linker. Only modules
which are required are actually loaded.

2.1 System Hierarchy

Levels of abstraction is a concept first described by Dijkstra®. A number of functions are loosely associated
with a level. The concept of a level allows the programmer to use a number of functions at one level without
being concerned about the operations at lower levels, This provides a way of thinking about a design which
is clear and precise®. Function modules at a higher level use functions at lower levels. If all functions are
specified in terms of the operations at a lower level and tested against these specifications, and if they are
used correctly in the higher level functions, their use in these functions need not be tested. They can be
assumed to be working correctly. This approach has made the testing of OSCAR very simple, because each
function is conceptually simple and need only be tested for the small number of cases the specification
allows for. If a function is more complex it is coded in terms of lower level functions which are tested
independently.

An example of functions at a given level which are well specified and whose correct operation is generally
accepted are the hardware operations executed by the central processor. These have been included in the
levels of abstraction which shows immediately that the hardware software boundary is quite flexible. For
instance floating point instructions are often implemented in hardware. The synchronising primitives in
OSCAR could be implemented in Hardware. The specification and writing of the software functions has
been carried out with the same care that would normally be exercised in designing a hardware facility. This is
desirable for two reasons.

1. The specification must be sound to achieve correct operation. The aim of providing these functions is
to give users the tools to design working systems.

2. The acceptance of a system such as OSCAR will be inversely proportional to the amount of software
maintenance it requires. There is also a heavy premium on reliable operation in real-time systems.

The OSCAR functions which have been implemented to date are listed here according to levels.

2.1.1LEVELO

¢ The Hardware Instruction Set of the Processor
* The Floating Point Instruction Set

e The Peripheral Device Interfaces

22

The Instruction set of the Nova is used without modification. This system runs on all Nova families of
computers. The Software Floating Point package looks to the users at higher levels just like a second
processor except for execution speed. The design of Device Interfaces for special devices must often be
carried out by users and then the interpretation of I/O instructions for such devices depends on the design
chosen. Luckily the Nova has a standard Interface design and an I/O instruction set which allows the
implementation of uniform designs for a large variety of devices.

A Version of OSCAR for the PDP-8 family of computers has been partly written but not tested. The concepts
of the rest of the levels are machine independent.

21.2LEVEL1

* Interrupt Handler
» Task Scheduler

This is the Operating System Nucleus. Above this level the system can be thought of as a number of Virtual
processors, each having the facilities of the hardware CPU, its registers and a number of private memory
locations and the Floating Point processor as an option. Interrupts are transparent to Virtual processors, just
as Data Channel cycle stealing is transparent to the Hardware processor. There is as yet no means of
communicating between Virtual processors and external devices.

2.1.3 LEVEL 2

* SVC Supervisor Call

e _EXIT Exit from a Supervisor Module

« WAIT Wait for one event

* MWAIT Wait for a number of events

e .POST Post the occurrence of an event in a task

* POSTI Post the occurrence of an event in an interrupt handler
+ LOWER Lower a semaphore

* RAISE Raise a semaphore

These functions are the means of communication between the User who has a virtual processor (Task) and
the Operating System Nucleus. The Supervisor Call allows access to System modules which are written as
Tasks at higher levels. The .SVC simply provides a function which sets up the linkage between these Tasks
and the User. Supervisor Task Modules have characteristics which are reminiscent of external devices. They
may be started by a .SVC and they will then execute as a parallel and independent task with a separate virtual
processor from the one making the call.

The other functions at this level implement the synchronising functions for Event Control Words and
Semaphores described previously.

2.1.4 LEVEL 3

¢ Device Interrupt Service Routines
* Device Drivers

* Re-entrant Supervisor Subroutines

23

« .DQIN Initialise Double Ended Queue (DEQ)

e LPUT, .RPUT Put a cell on one end of a DEQ

e LGET,RGET GET a cell from one end of a DEQ

« .FREQ Compute the frequency of a pulsed signal

* FLS Re-entrant interrupt service for pulsed signals
* MPY, MPYQ Unsigned Multiply

 DVD Unsigned Divide

« TIM Read elapsed time in clock increments

* FLOM Read elapsed flow in flow meter increments

These functions provide a number of services which are frequently required. They rely heavily on Level 2
and lower functions. For different applications users may develop alternative routines which will operate at
this level.

Device Interrupt Service Routines and Device Drivers are usually written together. They bear a similar
relationship to each other as the Data Channel Hardware of a computer and the Central Processor. They share
common memory registers and their timing is interleaved in a predictable way. Device Drivers are part of the
virtual Processor environment. Whereas Device Interrupt Service routines are outside this environment. But
Virtual Processors may WAIT for events which are first identified in Device Interrupt Service routines.
.POSTI is used to post such events. This call may not be used in a task. Device Interrupt Service Routines
cannot be suspended and no calls which may have suspension as a result can be executed in them. Re-entrant
Supervisor subroutines may be called from any Task. The specification of a particular routine may require
the setting up of a special data area which is used by the subroutine. Such areas must be set up for each Task
using the subroutine.

215 LEVEL4

Re-entrant Supervisor Programs:
* CELLO Buffered Cell Output Program
e CES Counted Events Scheduler

These are the program part of tasks which may be implemented by providing one or more task control blocks
which specify the starting point of one of these program as their initial starting point. Each task must also
provide a work area whose address is part of the initialisation constants for each task.

2.1.6 LEVEL 5

Supervisor Tasks:
« TTODQ Teletype buffered output task
« INODQ 2nd Teletype (Infoton) buffered output task
e DELAY (DELEX) Schedule an event a given number of real time clock increments in the

future. When the event occurs either POST it (DELAY)
or execute a subroutine (DELEX)

* FLOW (FLOX) Schedule an event a given number of flow meter pulses in the future.

24

Planned Supervisor tasks which have not yet been implemented are:
« OPEN Link a file or device to an input or output queue
» CLOSE Release a file or device from its queue

These are the actual tasks whose programs are provided at Level 4. The buffered output tasks are accessed by
users through Double ended queues, while the Event Schedulers are activated by a Supervisor Call.

2.1.7 LEVEL 6

Higher Level Language Interpreters
BASIC

This facility has not yet been implemented but much thought has been given to this extension of
OSCAR. The plan is to implement the BASIC language in this way and to extend its instruction set
to include the synchronising operations. Calls to assembly language routines will be included and all
Input/Output will be carried out via the appropriate OSCAR facilities. The interpreter will be written
to be re-entrant in the OSCAR environment. Interrupt service will be carried out at the appropriate
OSCAR level and user written Device Service Routines will be allowed. A BASIC Task will be
distinguished from other Tasks only by the fact that the Program Counter (PC) of that Task will be
pointing to the code of the BASIC Interpreter. A Task may change from BASIC to assembly
language programs simply by executing a call instruction.

To implement this facility a dynamic task structure with user defined priority would be appropriate.
The Editing and incremental compiling facility of BASIC would exist as one task with a given
priority. The RUN command would be extended to

'RUN <line number 1>, <line number 2>, <priority>'.

This would create a task which would start execution in the BASIC interpreter at line number 1 and
take its Data from the first DATA statement after line number 2. The Keyboard would still respond to
command input and a second Task could be started at the same line number or a different line
number by the extended RUN command. Also RUN could be used as a programmed command. This
would then be the same as the FORK instruction of Conway®.

One difficulty which must be overcome is the sharing of the console between the Editing Task and
the Running Task(s). This problem has been successfully solved in the implementation of Debug
Task which will be described later. The output to and the input from the console is transmitted in
lines via lower level function. In each Task a common semaphore ensures mutual exclusion of the
console. If a BASIC Task is running and printing some values, the programmer can break in on this
output by typing a special attention character - 'Escape’ would be a logical choice. The Task will then
complete the current output which RAISES the common semaphore and then continues running. In
the meantime the BASIC Edit Task has obtained the console and Program modification may proceed.
The Running Task(s) will proceed until the next output statement to the console where the Task will
be suspended on the common semaphore. A suitable Proceed command or character will LOWER
the common semaphore and allow the suspended Task to proceed.

Sharing of the console between a number of running Tasks must be organised by the user. This will
bring out the full power as well as the difficulties of parallel processing.

25

A REAL TIME BASIC facility should provide a worthwhile extension of the computer for
implementing On-Line systems. Many of these systems are presently being implemented with
BASIC in its Uni programming form.

The same system could also be used as a multi-user BASIC facility if several consoles are available.
In this case a number of consoles call up BASIC from a system Monitor. Each console will
communicate with the Edit package of BASIC program which it has caused to run. Communication
between consoles via BASIC would be possible.

FORTRAN and ALGOL

Fortran and Algol compilers are available for the Nova family of computers. The job of re-writing
the Run-time Library to fit in a Task Structure would be quite large. Otherwise, there is no reason for
not incorporating the OSCAR functions in these languages.

PL/1

PL/T already has a parallel processing capability. This very similar to the OSCAR structure and
OSCAR could probably be adapted to implement the PL/I parallel operations. At present there is a
compiler for PL/I which produces object code for Nova's, but which must be run on a larger
computer.

2.1.8 LEVEL 7
The Keyboard Monitor

This facility has again not been implemented, but it forms a logical extension to the OSCAR system which
has been planned and which would extend the system in the direction of a general purpose computer facility
or time-sharing facility. This may sound ambitious, but the author feels that the functions of OSCAR are
powerful enough to allow the implementation of a very versatile Multi-programming Disk Operating
System, which could be accessed from a number of consoles. Currently such systems only allow Multi User
Basic from a number of consoles. At best a number of User written, interrupt driven assembly language
programs could be run in parallel with BASIC. There are no facilities on any mini-computer for
simultaneous time-shared usage of a Disk Operating System Monitor, the higher level language compilers,
the assembler and the text editor. Implementation of such a system would require the re-writing of all these
programs in re-entrant form which is a formidable obstacle. But the generous provision for private register in
OSCAR and the provision of tested synchronising facilities should make this job much easier than if the
planning of such a system were to be started from scratch.

The Disk Operating System (DOS) for the Nova family of computers has a very good Keyboard Monitor
which allows simple yet effective communication between the Operator and the System. This system has a
number of implementation weaknesses which can be sheeted home to the lack of synchronising operations.
The routines which fill and empty buffers on the interface between programs and interrupt service routines
fail if a device empties a buffer too quickly. This was experienced when a fast Line Printer with a 132
character hardware buffer was installed. The sequence of characters in the output became mixed up because
of lack of communication between the interrupt handler which emptied the buffer and the device driver
which output the remaining characters.

Such a system would be very sought after for medium sized time sharing systems. Implementation would
probably be difficult without some form of hardware protection. Without it system integrity could not be
guaranteed to users if other users ran their own assembly language programs. Such a system would also
benefit greatly from memory paging hardware. This would allow the implementation of a virtual memory
structure. The present memory allocation and protection hardware for the Novas would do the job, and the

26

Nova on which the OSCAR system was implemented has this facility. So far it has not been used because the
computers for which real-time control systems were developed are without this extra hardware.

2.2 Interrupt Handler

Interrupts on the Nova store the Program Counter in Location 0, turn interrupt off and jump to the interrupt
handler whose address must be at location 1. The OSCAR interrupt handler only saves Accumulator 3 in the
first word of the currently active TCB. In another 2 instructions the device code is determined and a transfer
is made to a device interrupt service routine via a transfer. table on page zero. This transfer table must be set
up by the user. All devices which can possibly interrupt must be represented on this table. Devices which are
not required may point to a dummy device service routine which clears the offending DONE flag and returns
from interrupt. A typical Device Service Table is shown in the listing in the Appendix under the title TS1.
TS1 also defines a number of page zero constants and address pointers. These should-be retained.

2.2.1 Return from Interrupt

This 3 statement program is the symmetrical dual of the Interrupt Handler. It is entered from a Device
Service Routine, restores Accumulator 3, turns interrupt on and jumps via location 0 to the interrupted
program. The concept of symmetry has been used a great deal in coding OSCAR. Figure 13 which is a
flowchart of the Task Scheduler and Interrupt handler shows how this symmetry fulfils the basic
requirements of the problem of context switching.

=
¥ ¥ '
SAVE Ac3 SCAN TASK] DISABLE INT,
QRUEUVE
GET PEVY. No CAYE A3
L
JUMP VI4Q DEV.
X SERVICE TABLE I«
"4 ~u> SAVE Acd Aco !
e i s e e e o, CARRY, PC, MALK .
| . pEVICE RIVATE REG’ ger o A
CLEAR FLAG | serncs (] . ENABLE INT,
| | oreraTiod (rypean| SET uPhe), Aco -
| | i ALRY, Pe,MASK
(£ VES ’
| 0 PERATION PosT H- PRIVATE ReT S RETVRN FEOM
| g el ' ' INTERRUPT
S g)
| | ser rFras | __2 v uf de2 . 13 (nreRecrr ganocen.
—— T T e At THSK ScHepvier.
2.2.2 Task Scheduler

The Task scheduler has a number of entry points. These are only entered from other system modules, never
by users. The Scheduler saves two registers in the current active TCB and then carries out a scan of the Task
queue for the highest priority ready task. The structure of the task queue allows a fast scan to determine the
highest priority task quickly. Each task queue entry contains the TCB address in bits 1 to 15 and a Ready-'bit
in bit 0. If the Ready-bit is 1 the task is suspended, if the Ready-bit is O the task is ready and may be made
active. In the task scan the first entry where the Ready-bit is 0 is made active. This is done by saving all
relevant register of the current task in its TCB, and then setting up the registers of the TCB whose address
has been found in the task queue.

27

A test is carried out to check that the current active task is not the highest priority task found in the task
queue. If it is, time is saved by bypassing most of the task swapping code and simply restoring those registers
which had already been saved. Again symmetry was exploited to do this. For more details see listing of
program TS2 in the Appendix.

2.3 OSCAR Meta-Instructions

Communication between user programs and OSCAR is carried out through 'meta instructions' which are
subroutine calls followed by parameters. Because of the lack of a macro-assembler, these meta-instructions
are declared in their library modules as entry points (.ENT) and they must be declared as externals (.EXTN)
in user modules. Although most of the meta-instructions are subroutine calls, they have been equivalenced to
a single word usually beginning with a full-stop.

e.g. LENT JWAIT
.WAIT = JSR @ WAIT

2.3.1 Address Parameters

Parameters of OSCAR meta-instructions are frequently addresses or pointers to a certain memory location.
In most instances the convention has been adopted that if bit 0 of the address parameter is zero the address
defined by bits 1 to 15 is the required pointer. If on the other hand, bit 0 is a one the indirect convention of
the Nova computer applies and bit 1 to 15 defines the address in which the pointer is to be found. Usually
this indirect chain is emulated indefinitely until a zero is found in a bit 0. In one instance this does not apply
(See note in DELAY call). Care must also be taken if auto-increment or decrement registers are used as
indirect addresses. Since these indirect chains are usually emulated by software, no auto-indexing takes
place. In some instances the auto-indexing will apply and the rules of each routine must be strictly observed.
This problem can be serious in OSCAR because half the 'private' registers are auto-indexing. These make it
possible to use the system meta-instructions re-entrantly. If the indirect feature applies to a particular
parameter this is indicated in the calling sequence.

2.3.2 Supervisor Call

.SvC

<Supervisor Module Name>
<Other Parameters>
<Next Statement>

This is a linkage operation which causes scheduling of Supervisor Modules which are independent tasks
rather than subroutines. The Supervisor Module Name is declared as an entry point in the module and is the
address of the TCB for the task. Some supervisor modules have dual functions in which case bit 0 of the
Supervisor Module Name is used to mark the second function. Users do not have to worry about this. Two
separate names are declared in the Module in such cases. The other parameters depend on the individual
supervisor module called. Details are found in the calling sequence of each module.

The action of the .SVC is analogous to the JSR operation except they provide a call from one task to another
task, rather than from one program to another program. In the spirit of this, the main calling parameter is a
TCB address, and the action of the .SVC is to make this task active. The .SVC call also stores the TCB
address of the calling task in AC3 of the called task. This allows the supervisor module full access to all the
accumulators and private registers of the calling task at the instant it made the call. Since the .SVC is initially
also a Jump to Subroutine the value of AC3 in the calling task is a pointer to the word after the .SVC. Thus
the called task has access to all the parameters following the .SVC call just like any other subroutine.

28

NOTE :The task priority of the supervisor module must be higher than the priority of the calling task.
Otherwise the calling task will continue execution before the supervisor module, which is not intended. For
this reason the 5 highest priority task names TCBA-TCBE have been reserved for supervisor use.

The .SVC details are only important if users write their own task modules which are to be accessed by the
.SVC call. Also the EXIT call should never be used except in such a module.

2.3.3 Exit from Supervisor

LEXTIT
<NEXT STATEMENT>

This call suspends a task unconditionally. The effect is to schedule the next ready task. This is usually the
task which previously made the .SVC call to the module containing the .EXIT. It thus constitutes a return
from the supervisor module to the next statement after the Supervisor call in the task which made the call.
Data may have been passed through the calling tasks TCB or common locations. The latter mode is not re-
entrant whereas the former is. The statement after the .EXIT call is the statement executed when the
supervisor module is next activated by a .SVC. Thus the .SVC-.EXIT mechanism may also be used to
implement co-routines.

2.3.4 Post an Event

.POST
<ECW ADDRESS> or .W@<POINTER TO ECW ADDRESS>
<NEXT STATEMENT>

.POSTE ; ACO CONTAINS 15 BIT MESSAGE
<ECW ADDRESS> or @<POINTER TO ECW ADDRESS>
<NEXT STATEMENT>

.POSTI ; USE ONLY IN INTERRUPT SERVICE
<ECW ADDRESS> or @<POINTER TO ECW ADDRESS>

The execution of .POST or its companion instructions .POSTE or .POSTI marks the occurrence of a
particular event in real time. The only parameter is the address of an Event Control Word or a pointer to such
an address. The Event Control Word, which must be used as the parameter in a WAIT operation in another
task to establish a communication is tested and modified by the POST operation. Because Interrupts are
disabled this becomes an indivisible operation in the task environment.

All POST operations set bit 0 of the ECW which is the completion bit. Additionally .POST and .POSTI clear
bit 1-15 of the ECW. .POSTE is used to also transmit a 15 bit message to the task waiting for the event
(usually an error message). For this purpose bits 1-15 in ACO are stored in bit 1-15 of the ECW.

If bit 1-15 of the ECW were non-zero before modification these bits contain the address of the TCB of the
task waiting for this event. This TCB has a one word register called the Wait Count register whose arithmetic
value is the number of events the task is waiting for before coming to the Ready state. If a task is waiting for
the event, the Wait count in its TCB is decremented and if it becomes zero, the task is taken from the
Suspended to the Ready state and the task scheduler is entered. If the task is not waiting for an event or the
Wait Count did not become zero, a normal subroutine return is made in the case of .POST or .POSTE. These
two meta-instructions must always be used in a program which is executed on behalf of a task. The meta-
instruction .POSTI must always be used in an Interrupt Service Routine while Interrupt is disabled. .POSTI
returns control to the task which was interrupted by the device whose service routine contains the .POSTI
call. This return may be delayed if the execution of .POSTI caused a higher priority task than the one

29

interrupted to be made Ready. In this case the task scheduler will schedule this new task first and the
interrupted task will be re-scheduled later.

A similar sequence applies in the case of .POST or .POSTE. In this case if the execution of these meta-
instructions causes scheduling of a higher priority task than the one making the call .POST or .POSTE, then
return to the calling task is delayed until the higher priority task suspends itself.

Multiple posting through the same ECW is allowed. Only the first posting has any effect, all subsequent
postings are ignored. This means that if no task is waiting for an event that event can still occur a number of
times without any ill effect. It is possible to re-write the .POSTE routine to transmit the message in ACO
from the last posting rather than the first. In any case it is sometimes convenient to write a special POST
macro as in-line code for maximum speed. This has been done in the DELAY module (see Listing in the
Appendix).

2.3.5 Wait for a Single ' Event

LWAIT

<ECW ADDRESS> or @<POINTER TO ECW ADDRESS>
SUBC 3,3

STA 3,@.-'2

<NEXT STATEMENT>

This meta-instruction is one implementation of the WAIT operation. It suspends a task if some event which a
task wants to wait for at this point in its sequence has not yet occurred. This is equivalent to saying that the
ECW which is a parameter of the .WAIT meta-instruction has not yet been posted. The Wait operation tests
and modifies the Event Control Word as an indivisible operation as did the Post operation. If the completion
bit (bit 0) is already set (the ECW has already been posted) the next statement is executed immediately. If the
completion bit is not set, the Wait Count in the TCB of the current task is set to +1 (waiting for one event)
and the address of the TCB of the current task is stored in bit 1-15 of the ECW. Bit 0 is left cleared.

Also the Ready bit in the Task Queue entry for the current task is set to one. This puts the current task in the
suspended state. The task scheduler is then entered to schedule the next task.

After the .WAIT call the Event Control word must be cleared before execution of the operation which will
initiate the next event which finally posts the ECW. It is a good practice to do it immediately after the .WAIT
call and therefore a clearing sequence has been included in the calling sequence.

Event Control Words must also be cleared during the initialisation phase of a task. Otherwise re-starting of a
system is impossible. Sometimes it is advantageous to set the completion bit initially. This avoids initiating
the operation which posts the event during initialisation.

2.3.6 Wait for Multiple Events

.MWAIT

<ADDRESS OF ECW1> or @<...... >

<ADDRESS OF ECW2> or @<...... >

<ADDRESS OF ECWn> or @<...... >

-<m>

SUBC 3,3

STA 3,Q.-<n>-2 ; CLEAR ECW1

STA 3,0.-<n>-2 ; CLEAR ECWZ2

30

STA 3,@.-<n>-2 ; CLEAR ECWn
<NEXT STATEMENT>

This meta-instructions endows the Wait operation with a certain amount of logical power. It is to be
interpreted as:

"Wait for m out of the n. events listed".

The logic used is commonly known as majority logic. Two special cases exist which are most frequently
used:

* A MWAIT call with m=n.
This produces a logical AND. It is interpreted as:
"Suspend the current task unless or until all the events listed have occurred".
* A .MWAIT call with m=1.
This produces a logical OR. It is interpreted as:
"Suspend the current task unless or until one of the events listed has occurred".

The .MWAIT operation is not as efficient as the .WAIT operation for the special case of waiting for one
event. On the other hand the logical AND of a number of events can be implemented by a sequence of
.WAIT calls. This is not as efficient in space or in speed as the equivalent .MWAIT call. The logical OR case
can only be implemented by the .MWAIT call.

After the .MWAIT call Event Control Words must be cleared before any other call is made which may
involve suspension. There is an additional reason in the .MWAIT case. Some of the ECW's which have not
yet been posted will contain the TCB address of the current task. If another WAIT operation is carried out on
a different ECW, posting of the previously uncleared ECW may cause resumption of the task. Thus the
wrong event would make the task Ready. Such a Wait operation may occur in a subroutine. Therefore such
subroutines are included in the category of calls which may cause suspension. Therefore a clearing program
has been written into the calling sequence. In the case of the MWAIT call implementing the OR case it is
frequently required that a test is made of which of the possible events has caused resumption of the task. This
test must be made before the ECW's are cleared. The clearing program must then be modified but must not
be forgotten.

Caution 1: m should not be greater than n, the number of ECW addresses. If it is, the task will be
permanently suspended.

Caution 2: m should never be greater than 63. If it is it will be interpreted as an address pointer with
unpredictable results.

Caution 3: if pointers are used to indirect addresses using the indirect conventions these pointers
should never have addresses which are greater than 2'° - 64. If they are they will be
interpreted as -m. This is not difficult since this is the region reserved for the binary
loader in a 32K Nova computer.

31

2.3.7 Semaphores

Semaphores must be defined as a 2 Word Block.
eg. SEMl:.BLK 2

The first word is the Semaphore Counter. The second word is the Semaphore link. It contains zero when no
task is suspended on the semaphore or the TCB address of the first task suspended on the semaphore. During
task initialisation semaphores must be initialised correctly. They must be initialised in the highest priority
task using the semaphore. The Semaphore Counter should contain the number of LOWER operations which
are to be allowed before the Semaphore suspends a task. This value is 1 for a Binary Semaphore, which is
initially raised. The value is 0 for a Semaphore which is initially lowered. The Semaphore Counter should
never be initialised to a negative value. The Semaphore Link should always be initialised to zero.

Apart from initialisation, Semaphores should only be operated on by the operations LOWER and RAISE.
These are indivisible operations which work across task boundaries. Any other sort of test on the value of the
Semaphore Counter may no longer be valid by the time the test results become known.

2.3.8 Lower a Semaphore

LOWER
<ADDRESS OF SEN.> or @<POINTER..... >
<NEXT STATEMENT>

The Semaphore counter is decremented. If the counter is then positive or zero the next statement is executed
immediately. Otherwise the current task is suspended until a RAISE operation on the same Semaphore
makes the task Ready. When the task is suspended its TCB address is stored in the Semaphore link or in the
Word Count register of the last TCB in a chain of TCB's if this was not the first task suspended on the
particular Semaphore.

2.3.9 Raise a Semaphore

RAISE
<ADDRESS OF SEN.> or @<POINTER..... >
<NEXT STATEMENT>

The Semaphore Counter is incremented. If the counter is then positive (not zero) the next statement is
executed immediately. Otherwise a task chained to the Semaphore link is made Ready and the task scheduler
is entered. Which task is executed next depends on the priority of the task which has just been made Ready.

Tasks are made Ready by RAISE operations in the order in which they were suspended. Thus no task can be
suspended indefinitely at the expense of other tasks.

2.4 Simple Drivers and Interrupt Handlers

.GET
<NEXT STATEMENT>

Get a character from the Teletype Keyboard in AC@. The Event Control word used is TTIEC.

.READ
<NEXT STATEMENT>

1 Do not use Auto-Indexing Registers for Pointers.

32

Get a character from the High Speed Paper Tape Reader. The Event Control Word used is PTREC.

. PUT
<NEXT STATEMENT>

Print a character passed in AC@ on the Teletype. The Event Control Word used is TTOEL.

. PUNCH
<NEXT STATEMENT>

Punch a character passed in ACO on the High Speed Paper Tape Punch. The Event Control Word used is
PTPEL.

These routines are all similar in structure. An interrupt from any of these devices will clear its flag and POST
the Event Control Word mentioned. The Drivers WAIT on this Event Control Word on entry and then get or
put the character on the device before returning.

2.4.1 Teletype Driver and Interrupt Handler
This Teletype Driver emulates a device with many more capabilities than the actual Teletype.

JSR @PUTB or JSR @PUTBI
<MAX NO OF BYTES IN BUFFER>
<NEXT STATEMENT>

AC2 must contain the word address of the first byte in the buffer

The input is passed to the driver as a byte string which must be stored in a buffer whose address is passed to
the driver in AC2. This allows the routine to be used in re-entrant situations. The driver is not itself re-
entrant, but its address may be stored in a private register and a re-entrant program may be shared by several
tasks each of which communicate with a different driver. This is frequently required for Teletypes used as
terminals.

The maximum number of bytes in the buffer is included in the call as a safety feature to prevent printout of
characters which are not in the buffer. Normally a string is terminated by a null byte. The routine could easily
be modified to also terminate a string by a Carriage Return or a Form Feed.

The following special character functions have been implemented.

ASCII CODE ACTION

000 MARK LAST BYTE OF A STRING

001 INSERT CRLF

002 INSERT CRLF

004 SUBSTITUTE FOR TAB

005 ENQ' SUBSTITUTE FOR FORM FEED

010 CR ONLY

011 TAB TO THE NEXT COLUMN OF 8

012 LINE-FEED (THE FIRST LF AFTER CR IS IGNORED)

33

ASCII CODE ACTION

014 FORM-FEED (COMPLETE THE CURRENT PAGE)
015 CARRIAGE-RETURN (INSERT LF)

017 SUBSTITUTE ‘)’

031 SUBSTITUTE SPACE

032 SUBSTITUTE <’

034 SUBSTITUTE ‘1’

035 SUBSTITUTE LF

037 SUBSTITUTE ‘(*

177 RUB-OUT (IGNORED)

Any other control codes are not transmitted.

The Constants are correct for an Olivetti Terminal Type 308, adjusted for 80 Character lines. The page length
is 60 lines with 6 extra lines to complete an 11" page.

To obtain a consistent page format all output to the Teletype must be channelled through this driver.

The driver when called by 'JSR @PUTB' returns to the calling program when the last character has been
transmitted to the Teletype. This is 100 ms before the completion of printing of the last character which is the
time when the buffer becomes free. Another call 'JSR @PUTB' may be made immediately because the first
thing the driver does is wait for the completion of printing of the last character. Thus 100 ms are available to
generate another buffer while maintaining the Teletype at its maximum speed. If this is not enough the driver
may be called by 'JSR @PUTBI'. In this case the next statement is executed immediately the first character
has been transmitted. Output and further computation may then proceed in parallel. Care must be taken not to
disturb the buffer. To synchronise with the transmission of the last character wait for the event control word
"TTOEZ2' which is a global symbol.

2.4.2 Drivers and Interrupt Handlers for other Terminals

A Driver for an Infoton display and Keyboard has been written.

JSR @INDB or JSR @INDBI
<MAX NO. OF BYTES IN BUFFER>
<NEXT STATEMENT>

AC2 must contain the word address of the first byte in the buffer

This is very similar to the Teletype Driver. The only difference is that it emulates a few extra character
functions which are peculiar to a display.

ASCII CODE ACTION

000 MARK LAST BYTE OF A STRING

34

ASCII CODE ACTION

001 SAVE THE POSITION OF THE CURSOR

002 RESTORE THE CURSOR TO THE POSITION LAST SAVED
010 HOME THE CURSOR WITHOUT ERASING

011 TAB TO THE NEXT COLUMN OF 8

012 LINE-FEED (THE FIRST LF AFTER CR IS IGNORED)
014 ERASE SCREEN AND HOME CURSOR

015 CARRIAGE-RETURN

017 BLINK-OFF

031 CURSOR RIGHT

032 CURSOR LEFT

034 CURSOR UP

035 CURSOR DOWN

037 BLINK-ON

177 RUB-OUT (ERASE CHAR. ON THE LEFT)

Any other Control Codes are not transmitted.

The Constants are correct for an Infoton Display with 20 lines, 64 characters per line and set to 'Roll' mode.
A Cursor Count is maintained which follows the actual Cursor on the screen. The Cursor save and restore
feature make use of this count.

2.4.3 Data Communications Multiplexor Driver

The Asynchronous Data Communication Multiplexor (DCM) type 4026 for the NOVA can control the
transmission of asynchronous serial data on 16 output lines and can receive asynchronous serial data
simultaneously over 16 input lines. The device requires periodic changes in the contents of a 16 bit output
register in which each bit is connected to a separate output channel. Thus successive changes in the register
contents produce bit-by-bit serial transmission over the channels. Data is received by periodically sampling
the 16 input lines to pick up the bit-by-bit serial input. The sampling rate must be greater than the bit rate to
allow for degradation of the signal. Satisfactory operation is achieved by sampling the input 5 times per bit
time. With such a scheme a transient that in less than 3 sample times is not mistaken for a start pulse.

Because the sampling rate is 550 Hz for 110 Baud Teletypes a driver for such a device can easily use up an
untoward amount of computer time. The Data Communications Multiplexor Handler program which is
supplied by the manufacturers executes 343 instructions for every sampling interrupt. This means a 39%
occupancy on a Nova computer. The Drivers and Interrupt Handler written to run under OSCAR can handle
each sample interrupt in an average of 35 instructions. This lowers the occupancy to 4% for 16 terminals

35

which is 0.25% per terminal. These figures are 3 to 5 times better for both handlers with the new range of
Nova computers. Manufacture of this piece of hardware has ceased, probably because of the high occupancy
associated with the standard handlers. The device has been replaced by a similar device which assembles full
8 bit characters by hardware.

The rest of this description should apply to both types of multiplexors.

There are 32 drivers one for each input line and one for each output line. Only those drivers which are
actually required in an installation need be loaded. The DCM Interrupt handler posts an ECW associated
with an input line each time a character from that line has been assembled. It posts another ECW associated
with an output line each time a character has been transmitted on that line.

Each of the drivers wait for the particular ECW which is posted in the Interrupt Handler and then picks up
the character from a one word Buffer for input or stores the character in a one word buffer for output. This is
the simplest sort of driver, and to users its operation is identical to the driver for a conventional Teletype
interface as in Section 2.4. User systems would probably be structured to be one task for a pair of drivers.

SERA At 1/«:: LimES

\
— 7\
4 2 R 16
/ \ ¢ . B
[l \\ / \ / \\
BuiLr CuAl, SEND cral | . RuiLd AR SEMD it SEND CHAR
N BuFrd FRom Ruged W Rurpz FRom Rugel FRor RJFOIG
’ L
: \
\ Vi i \

/
A
“PogT N =
Demrg beMod L
CWAT
DCMIZ

BUET4 > eyl Acg —»burod RUFLY > Acgs Acg > goron, Qe guEovh

e s

FIG. 14 DCM Interrupt Handler and Drivers

\

\ ¥
L PosT _ ‘ L PosT
pemoz i PemMoil

GET2

i) | i S s L s
e e s — — —
o ———— — a——

This approach contrasts strongly with the DCM Handler supplied with the machine. It has its own interrupt
handler, and this is virtually the master program. Each time a character is built up it does a 'JSR' to a user
supplied subroutine which must accept this character (or supply one in the case of printing). The user
program is only allowed 1000 instructions times to do this. Otherwise the sequence will go astray. In other
words the User program is a subroutine to the DCM handler. Contrast this with OSCAR where all functions
are subroutines to the User. The worst that can happen if User programs are too slow is that a device driver
may post more quickly than a task can accept events. In this case characters would be lost. But this is no
different to operation of a single Teletype without interrupt. If a program cannot get around the loop in 100

36

ms characters will also be lost. Thus programs which run in conventional single terminal mode will run
exactly the same under OSCAR through the DCM Diriver.

More complex drivers along the lines of section could be written for this device. The Interrupt Handler
would not be changed. It would be appropriate to write the driver re-entrantly.

2.5 Double Ended Queues

Dynamic buffering is carried out in OSCAR by the common list structure called Double Ended Queues.
These are more useful than Single Queues because they may be accessed at both ends. Each Double Ended
Queue (DEQ) consists of a control block and a variable number of cells. The number of cells may be zero in
which case the DEQ is an empty DEQ. Each cell consists of two link words and a fixed number of words of
storage which may be used as buffers. The address of a cell is the address of the first word of buffer storage.
The Link words have a displacement of -1 and -2 with respect to the cell address. The Link words may be
used as temporary storage registers while the cell is not on a DEQ. Once a cell has been put on a queue the
Link Words will be overwritten.

The first two words of the Control Block (DQCB) and the two link words in each cell in the queue together
form a circular linked list. The first word “L” points to the cell on the left. The second word "R" points to the
cell on the right. The link words in the Control Block close the circle. Since the address of the Control Block
is known, routines using the Control Block address as a parameter can manipulate cells immediately to the
left and right of the control block.

DEQ's are operated on by five routines one to initialise a DEQ, two to get cells from the queue and two to
put cells on the queue.

2.5.1 DEQ Initialisation Routine

.DOINI

<DQCB ADDRESS> or @<POINTER TO...... > ; D
<CELL BYTE LENGTH> or @<POINTER TO > ; L
<NUMBER OF CELLS> or @<POINTER TO...... > ; N
<ADDRESS OF FIRST CELL> of @<POINTER TO...... > ;S

<NEXT STATEMENT>

This routine initialises a DEQ Control Block and a set of cells. This is usually done in the initialisation phase
of a task. Even if a DEQ is to be initially empty it is necessary to re-write the appropriate pointers when a
system is re-started. As a general rule DEQ's are set up to be initially empty because they represent buffers
for various facilities which are empty to start with. Only one DEQ is set up with cells and this is a source of
cells for the system. This DEQ is set up by OSCAR and its DQCB has the label FREE which is defined as a
global symbol. The number of cells (NC) and the cell length in bytes(CL) must be defined in TS1 which is
normally assembled by users to set up their configuration of OSCAR. The labels NC and CL are entered as
global symbols in TS1. If cells are going to be taken from FREE then the global symbol CL should be used
as the 3rd parameter in .DQINI and as parameter of the calls 'JSR @ PUTB' and 'JSR @ INDB' discussed in
Section 2.4.1 and 2.4.2

Different length cells can be handled by these routines in the one system, but only cells of the one length
may be taken from or put on a particular DEQ. Since cells are normally taken from the FREE DEQ and put
on a buffer DEQ and then put back on FREE, these must all have the same length cells.

NOTE 1: Cell length (L) must be specified in bytes in the 2nd parameter of the .DQINI call. It will be
used to store the number of words in a cell in the last word of the DEQ Control Block. This

37

constant does not include the two link words. Thus the actual space taken up by a cell is
(L + 5) /2. This allows for the extra byte which is actually provided if L is odd.

NOTE 2: The number of cells specified (N) is also the maximum number of cells allowed on the
DEQ. If the address of the first cell (S) has the value '0', the DEQ is initialised to be empty, and
'N'isused only to set the maximum number of cells on the DEQ.

NOTE 3: The amount of storage which must be set aside for cells may be computed as follows. If 'N' is
the number of cells specified, 'S’ is the address of the first cell and 'L' the byte length then the
locations used go from

S to S+ (N * ((L+5)/2) - 1)

The FREE DEQ which is set up by OSCAR is started at the first free memory location after
OSCAR is loaded. Thus the OSCAR Library must be the last module during the relocatable
linking or loading operation. Having predefined L = CLand N = NCin TSI the last location
used by the FREE DEQ will be

LAST = NREL + (NC * ((CL+5)/2) - 1)

Care must be taken that this does not interfere with the binary loader or at least does not
reach past the available memory.

NOTE 4: Even if a DEQ is to be initially empty it should be initialised with the .DQINT call so that the
DEQ Control Block pointers are restored and the semaphores are reset when re-starting the
system.

2.5.2 Get a Cell from a DEQ

.LGET or .RGET
<DEQCB ADDRESS> or @<POINTER...... >
<NEXT STATEMENT>

.LGET and .RGET will obtain the address of a cell from either the left or right of the DEQCB specified. The
address of the cell is returned in AC2. The DEQ is re-linked to exclude the cell which has been taken out. A
semaphore in the Control Block is LOWERed which counts the number of available cells in the DEQ and if
an attempt is made to get a cell when the DEQ is empty, the task making the call is suspended. The task is re-
activated when another task puts a cell on the DEQ which RAISEs the semaphore. That cell is then
immediately available for the .LGET or .RGET call.

A second semaphore counts the number of cell spaces still available before reading the maximum number.
This semaphore is RAISEd by .LGET or .RGET because these calls make another cell space on the DEQ
available.

.LGET and .RGET also store the address of the cell returned in AC2 less 1 in private location 20. Thus
location 20 can be used as an auto-incrementing pointer to the words in the cell. The word length of the cell
is returned by both routines in location 30. The operation 'DSZ 30' can thus be used as a loop count when
accessing words in the cell.

2 Auto-indexing registers may be used, they will not auto-index.

38

2.5.3 Put a Cell on a DEQ

.LPUT or .RPUT
<DEQCB ADDRESS> or @<POINTER...... 2>
<NEXT ADDRESS>

.LPUT and .RPUT insert cells into a DEQ. The address of the cell must be passed to a PUT routine in AC2.
Since cells are usually taken from another DEQ with a GET operation which provides the address in AC2,
the two operations are compatible. The new cell is linked into the DEQ on the side specified. The cell
counting semaphore is RAISEd and if a task had previously been suspended because it tried to get a cell
from where there were none it will now be re-activated. The second semaphore is LOWERed and if the
present cell would make the number of cells on the queue exceed the maximum number specified at
initialisation, the task making the PUT call will be suspended until a cell is taken from the DEQ by another
task. This mechanism prevents all the cells from the FREE DEQ being taken by one task and put on one
DEQ. This would prevent other tasks from getting cells.

2.6 Elapsed Time

TIM
<NEXT STATEMENT>

A double precision counter is maintained by OSCAR. This counter is incremented every tick of the Real
Time CLOCK. Because the interrupt service for each clock tick is only 20ps at most, a clock frequency of
1KHz is handled comfortably and the system is initialised to this value. If a different speed is required the
value of RTCSP in program DELAY must be altered. If 16 bit accuracy only is required, the low order word
TIME may be loaded directly. This word is on page zero and is entered as a global symbol. TIML should not
be modified. If double precision is required the call .TIM will return the double precision time in ACO, AC1.
This call should not be carried out when Interrupt is off.

If the time has been taken at two different points in a sequence the difference, either single or double
precision will give the elapsed time between the two points in the sequence as long as the elapsed time does
not exceed 2'° or 2* respectively. A simple unsigned single precision or double precision subtraction is all
that is required to obtain this difference.

This works even if the absolute value of the time for the first event is greater than the absolute time of the
2nd event. In this case overflow of the clock counter has occurred between the two events. Two's
complement subtraction allows for this case.

2.7 Event Scheduling

Certain system resources may be required by more than one task. In this case queuing facilities must be
provided with the routine servicing such a resource. Examples which come to mind are Read and Write
requests from random access devices. These have been coded for OSCAR on an experimental basis but have
not yet been incorporated in the system. A resource which is fundamental to real-time system and which has
been provided with a queued service routine is the Real Time Clock. This routine may also be used by other
devices which interrupt a computer at regular intervals and these interrupts mark the completion of a
quantum of some physical measure. Devices which come to mind are displacement measuring equipment
and liquid flow meters. Routines for the latter have actually been implemented for a liquid blending system
described in Section 1.1.2.

39

To allow for this diversity of similar devices a re-entrant set of routines was written. Each physical device
uses separate tasks to implement event scheduling for itself. The re-entrant programs have been called the
Counted Events Scheduler. The action of this general program will be described by the particular
implementation for the Real Time Clock. Implementations for other devices should be done after consulting
the listing of the assembly DELAY which contains the Interrupt Service routine for the Real Time Clock and
the Task Control Blocks for the associated tasks.

2.7.1 Time Scheduling

Enter an Event into the timed event queue.

.SVC

DELAY

<ECW ADDRESS> or @<POINTER...... >
<DELAY> or @<ADDRESS CONTAINING DELAY>
<NEXT STATEMENT>

Timing starts immediately the call is made. <DELAY> must be given as an integral number of clock ticks
from the time the call is made.

Any task including the one making the call (but only one) can wait on the completion of the delay which is
accompanied by posting of the ECW whose address is passed in the call.

NOTE 1: If this call is repeated for the same ECW, the previous queue entry is deleted and the
event will not be posted. Only the latest entry will be posted when the number of time ticks in
the <DELAY> parameter have elapsed.

NOTE 2 : For both types of call the <DELAY> must be less than 2" clock ticks if given directly in the call
or less than 2'° clock ticks if pointed to by an address in the call.

NOTE 3: The indirect chain for <DELAY> proceeds only 1 level whereas the chain for ECW addresses or
subroutine addresses proceeds as long as @'s are encountered.

Enter a request for 'delayed execution' of a subroutine.

.SVC

DELEX

<ENTRY ADDRESS OF SUBROUTINE> or @<POINTER...... >
<DELAY> or @<ADDRESS CONTAINING DELAY>

<NEXT STATEMENT>

This is an alternative of the first call which does not involve posting after completion of the delay. The
request is entered into the timed event queue and control returns to the next statement immediately. When the
delay time has expired the subroutine, whose entry point address is stored in the queue is executed at high
priority by the supervisor.

NOTE 4: All entries for subroutine execution. are retained and finally executed even if other requests for
the same subroutine are made before the first has occurred.

NOTE 2 & 3 of the previous section also apply.

Since the subroutines requested are executed by the supervisor at high priority these subroutines must satisfy
a number of conditions. Otherwise the supervisor functioning will be impaired.

1. Routines should be as fast as possible.

40

2. Routines should contain no calls which could result in suspension.

3. All accumulators (including AC3) carry and private locations 6, 20 and 30 may be modified. Private
locations 7, 21, 31, 40 and 41 must be preserved. Location 40 will contain the return point in the
supervisor. Thus the return to the supervisor is 'TMP @40'.

A typical use for the delayed execution facility is the outputting of a digital signal at a certain point in time.
Such a single instruction action would not warrant the setting up of a whole task.

2.8 DEBUG TASK

This is a task which may be linked in with OSCAR systems to provide an on-line debugging facility. It uses
the Teletype for input and output. If the Teletype is also required by other tasks the semaphore SENDT
defined in DEBUG TASK provides mutual exclusion of the Teletype as a facility in different tasks. Unless
output is taking place through the Teletype in another task, the Teletype keyboard is always receptive to
DEBUG TASK commands. These follow the standard pattern of Nova Debug programs. Any memory
location may be inspected and/or modified. A sequence of memory locations may be searched for a particular
word after it is masked. This operation also allows listing of a sequence of memory locations. A Breakpoint
may be entered at any memory location. Since DEBUG TASK is always active with other tasks this may be
done even when the system has been set running. When the Breakpoint instruction is executed the task mode
of operation is frozen and DEBUG TASK is run as a stand-alone program. This means that the instantaneous
description of all other tasks which includes all variables and also private registers in TCB's may be
inspected and modified. Because of the logical processor concept of task this scheme makes debugging of
real-time systems very tractable. The task mode may be resumed with the 'proceed’ operation of DEBUG
TASK.

This dual mode of DEBUG TASK makes it a very powerful debugging tool. To the user the action of most
operations look the same, whether DEBUG TASK is in task mode or at a breakpoint. The inspection of
variables while a system is running is particularly useful. For example, the register which stores the value
from an A/D converter may be monitored at any time without first stopping at a breakpoint. This is important
when a system is controlling a factory process. It is then undesirable to stop the system. DEBUG TASK
allows effective debugging even in this situation. The following is a case study of a typical debugging
session.

By observation of the behaviour of certain variables and by inspection of the program listing it was
determined that a control algorithm was faulty. This became evident because one control loop in a system
containing a number of control loops was unstable. The system was running on line and the unstable
behaviour was not severe enough to warrant a shutdown. A modification to the control algorithm program
was written and checked on paper to make reasonably sure that it would work. Then the modification was
entered into a spare section of the computer memory as a patch. The memory modifying function of DEBUG
TASK was used for this purpose. The whole patch was typed in and checked while the rest of the system
operated with the old algorithm.

Then a statement in the control algorithm was overwritten with a branch instruction to the patch. The next
execution of that algorithm then executed the patch. The effect of the patch may then be observed. If the
action of the patch makes the system worse the branch instruction is again overwritten with the old
instruction. This restores the old algorithm. If the patch causes wild operation then the system will of course
crash. But this kind of modification was carried out repeatedly on an on-line system and very few mistakes
were made. The final operation if a patch is successful is to list it and also to punch out a binary tape of the
patch. This may again be done while the rest of the system is on-line.

41

2.9 Applications of OSCAR

Two major systems have been designed and implemented with OSCAR. One is a mineral processing
application the other is in the continuous production process category.

2.9.1 Ore Sorter

This is a machine developed at the C.S.R. Research Laboratories for the sorting of minerals. Pieces of ore
which are in a given size range are passed through the machine in single file. Two sensors and one activator
are mounted adjacent to the rock stream. These units are inputs to and output from the computer controlling
the whole operation. The first sensor detects the presence of a rock and also measures its outline. A task is
activated by every change in outline detected by this sensor called the position detector.

This task called the OUTLINE ANALYSER assigns sections of the outlines to data structures which
represent individual rocks. By means of patented pattern recognition means' the representations are for
individual rocks even if their outlines overlap with other rock outlines or are separated from them by
diagonal or horizontal clefts only (which cannot be detected by simple logic) . As soon as the OUTLINE
ANALYSER tasks recognises a rock whose outline is closed, it, in a sense, casts this rock adrift. This is done
by a DELAY call through an EVENT CONTROL WORD in the Work area associated with each rock. This
Work area also contains a TCB. Thus each rock has associated with it a task. This task is initially suspended.
It waits for the posting of the ECW in the Work area.

The delay between the completion of the rock outline and the activation of the task associated with each rock
is computed to be just after complete information from the second sensor becomes available and just before
the rock comes in line with the activator.

The second sensor measures a physical parameter of the rock, which can be used to make a decision on the
economic value of each piece of rock. The parameter measured is usually a surface parameter. This sensor is
usually connected to the computer memory via a Data Channel because transfer rates are too high for
program controlled transfers. In the memory a picture of this surface parameter is built up in a data block. It
is the completion of this picture that the task associated with each rock waits for. The re-entrant program
which these tasks execute is called the SURFACE ANALYSER. By means of the picture of the physical
parameter along the whole rock stream and the outline of the particular rock the surface of each rock outline
may be analysed separately. This analysis is carried out and the result is tested against a threshold value
which may be varied by an operator. Rocks above the threshold value are valuable and pass straight through
the sorter. Rocks below the threshold value are considered barren and are deflected into a separate stream by
the activator. The activator is energised and de-energised by a subroutine whose execution is scheduled in the
SURFACE ANALYSER by a DELEX call. Thus the deflection may occur some time after the analysis has
been computed. The time delays involved are computed so that the physical rock is in line with the activator
when it is energised. The duration of the activator pulse is tailored to the size of the rock.

The total execution time of all the task segments associated with one rock is 15 ms, on a Nova or 5 ms, on a
Nova 1200. This speed allows sorting of 70 or 200 rocks per second which corresponds to 70 or 200 tons per
hour. The system as installed uses a Nova. The actual time of flight of a rock between the first sensor and the
activator is 150 ms, so that each rock has an occupancy of 10%. The system allows for 12 tasks for surface
analysis so that there may be 12 rocks in various stages of analysis in this system at any one time.

Inspection of the code has shown that the time spent in the supervisor and the time spent in actually
processing rock data is approximately 50/50. This may seem a high ratio for the supervisor. On the other
hand there seems no way of pushing the sensors and the activator closer together so that the whole job could
be done as a uni-program. The supervisor functions are actually useful towards getting the job done. Since

42

this is an extremely fast system in data processing terms the time of 7.5 ms in the supervisor is also not very
high. In this time an average of 10 task swaps are carried out.

The only observation which should be made is that there is great scope for hardware implementation of
context switching and some of the other supervisor functions in high speed systems as the one described.

2.9.2 Materials Blending System

This is a system developed for a factory producing a continuous product which is made by mixing a number
of dry and liquid materials. These materials are mixed according to a formula which is based on a recipe for
the particular product and which contains parameters which reflect the chemical reactions taking place in
making the product. The computer based system replaces a system which was largely controlled either
completely manually or by pneumatic controllers. The computer either sets the set-points of electric
controllers or controllers are implemented in the computer by direct digital control (DDC). Either way the
computer also reads many plant parameters for control purposes or for giving alarms. The control system and
alarm system constitutes the lowest level of this system. At a higher level is the computing of all set-points
according to the formula for the current product. At a higher level again the Operator can monitor and
modify all the plant variables and vary the recipes for all the product. This is done via a Television Terminal
and Keyboard. At the highest level the system collects information about the current production for a number
of shift logs which are printed automatically on a system printer.

The system was justified on the basis of reducing the variation in the product made. This aim has been
achieved and a significant improvement in the weight variation of the final product can be maintained.
Fringe benefits are ease of changing from one product to the next and ease of winding up the total speed of
the process until some physical limit is reached. This used to be a difficult process before the computer
system was installed because of the extensive calculations involved.

The different levels briefly described above are implemented as independent tasks. This provides a nice
breakup of the work. This system was planned and coded by a number of programmers who were not
involved previously with OSCAR. Work by these different programmers could be tested independently
because of the task structure.

43

3 OTHER OPERATING SYSTEMS

The following sections are reviews of a number of Operating Systems or Significant papers about Operating
Systems which have appeared recently. The systems are looked at with a view to their suitability as real-time
operating systems. Any criticism is made with this point in mind.

3.1 A Multiprogramming System developed by B. Williams

Bruce Williams first introduced me to the concept of Tasks and Task Control Blocks™. Prior to this I had
attempted to develop a system based on a Stack only. This had been coded during the first few months of
1970 and proved to be very intractable. There was no easy way of establishing in which order execution of
various sections were going to proceed because of the unpredictable nature of Interrupts. Every now and
again the system would die because of a bug and then it was nearly impossible to establish what belonged
where on the Stack by inspection.

Bruce Williams system was made up of two sections, an Interrupt Handler which stored machine status on a
Stack and a Task Scheduler which stored machine status in Task Control Blocks. I have modified this scheme
by not having a stack, but the use of the Stack does allow the implementation of Device Service Routines
which are themselves interruptible.

The Interrupt Handler consists of four modules:

Module 1 is entered after every interrupt. It saves 2 accumulators carry and the Program Counter in
fixed locations. It then checks that the interrupting device is valid and transfers to the
appropriate Device Service Routine if it is. Interrupt remains off.

Module 2 is the converse of Module 1. It is entered after completion of Device Service if that Device
Service did not call on Module 3. It restores what was saved in Module 1 and returns to the
interrupted program.

Module 3 is a subroutine called from a Device Service Routine if it is going to be lengthy and requires
more accumulators. The accumulators carry and PC saved in fixed locations are transferred to
thestack. The remaining accumulators are also stored on the stack. An Interrupt Priority Mask
for the interrupted program is stored on the stack and a new mask which is passed as a
parameter of the call from the Device Service Routine is set up. Interrupt is turned on unless the
stack is about to overflow in which case it is left off.

Module 4 is the converse of Module 3 and 1. It restores all the status on one stack frame including the
Interrupt Priority Mask. If the stack is about to become empty, the last stack frame is transcribed
to the currently active task and a scan of all tasks is carried out on the assumption that one of the
Device Service Routines may have changed the status of a higher priority Task than the
currently active one. If the stack is not about to become empty Module 3 returns to the
interrupted program.

The Task Scheduler is entered in two ways. One way is via Module 4 of the Interrupt Handler which has just
been described. The second way is from a User program running as a Task when it executes the WAIT meta
instruction. The WAIT routine of the Task Scheduler saves Location 6 and 7 as well as the accumulators
carry and PC. The actual Task scheduler is then entered. This consists of executing the next instruction in
every Task starting at the highest priority Task. This instruction, which is always the instruction following a
WAIT call should be a test for some condition for which the Task is waiting. If the test fails the Task should
transfer to NO and if it succeeds the Task should transfer to YES. The NO entry continues the task scan with

44

the next lower priority task. The YES entry terminates the scan and sets up the Task which has just been
tested for further execution.

A typical calling sequence for waiting for the Teletype Done flag to set would be:

WAIT ; SUSPEND TASK AND TRY ALL OTHER TASKS
LDA 0, FLAG ; GET FLAG SET SOMEWHERE

MOV 0, 0, SNR ; TEST FLAG

NO ; FORGET THIS TASK FOR NOW

YES ; PROCEED WITH THIS TASK

The system works but it is very slow. It is difficult to introduce an efficient service routine for a real-time
clock. This made me look for an improved system. In designing OSCAR the following shortcomings were
overcome:

1. Avoid too much copying from one register save area to another. Bruce Williams system saves some
accumulators in three different locations. In a fixed location for simple Device Service. On the stack
for more involved Device Service and then in the Task Control Block when the task state is reached.
For each changeover the registers must be transferred. In OSCAR a register is immediately saved in
the Task Control Block,

2. To determine the occurrence of an event the Task Scheduler must test software flags over and over
again which introduces a large overhead for Task scanning. In OSCAR the POSTing of an event
control word which is equivalent to setting a flag marks a Ready bit in the task queue which can be
tested in a 3 statement loop per Task. In Bruce Williams system the shortest scan would be 6
statements. This will often be longer.

3. The Task scan must be carried out for nearly every interrupt in case that interrupt has caused a flag to
be changed which would allow some Task to proceed.

In OSCAR a task scan would only be carried out when some task has actually been made Ready and not for
every interrupt. This is the most significant means of cutting down the Task Scanning overhead. Some
thought has been given to not doing a task scan at all but this involves setting up a structure in which priority
of a Task that has just been POSTed can be simply compared with the current Task. This problem has not yet
been solved but could lead to an even more efficient solution.

3.2 THE" - Multiprogramming System

This system developed by a team under the leadership of Edsger W. Dijkstra'? is a very early exposition of
the ideas of parallel processes, semaphores and verification of design and correctness of implementation. It
was developed on a Dutch machine of which little is said except that it has an interrupt system to fall in love
with (A property which A.M. Turing doubted a machine could have®). The aims of the system are modest, it
incorporates a paged virtual memory and it uses independent processes for servicing various tasks that arise
in the system. The paper is notable because it introduces the concept of Levels which is seen again in the
Venus Operating System. Each level takes care of a number of machine functions, which then can be ignored
at higher levels. Thus testing becomes much easier, because the operations at lower levels, once tested, may
be ignored at the higher levels. This is a very important paper which provides much of the foundations for
later systems.

45

3.3 The Venus Operating System

This system is a combined software/hardware project carried out on an Interdata 3 computer. It is an
experimental multiprogramming system supporting six users who operate on-line and interactively through
Teletypes. Its main distinction is that the system primarily caters for users who are co-operating with each
other either via common data or through co-operating processes. The system was produced to provide a
machine and a software system which would make the building of co-operating structures easier and to test
the difficulties encountered.

In many ways the aims of the Venus project are similar to the aims I have outlined in this thesis. They have
gone a step further by implementing hardware changes to a computer, which I was unable to do. T will
propose in the final section of this thesis a number of hardware operations which a real-time computer should
have. Many of these have been proposed and implemented on the Venus machine.

The features implemented are:
1. Segments
Multiprogramming of 16 concurrent processes

Microprogrammed multiplexed I/O channel

R

Hardware procedure calls

Segments are named virtual memories. Segments and core memory are both divided into 256 byte pages.
Information about each core page is kept in a core-resident table, used by the micro-program to map virtual
addresses into real-addresses. Paging is performed on demand of a page fault routine when the microprogram
cannot locate a page in core.

Multiprogramming. A process is defined to be the execution on a virtual machine® . This is the same
interpretation as used in OSCAR. The Venus system supports 16 virtual machines. These are made up of the
address space which is the same for all virtual machines. This is unusual but the authors explain that they see
this as an aid to implementing common data.

Each Virtual Machine has about 150 bytes of Work Area which is permanently located in core. This
corresponds to Task Control Blocks in OSCAR. In the Venus system this block is rather large. The authors
mention that the general registers and program counter may be found in the Work-Area (TCB) but no
mention is made how these registers are swapped from the CPU to the work area and back when processes
are re-scheduled. One possibility is that the micro-program operates directly on the memory locations
holding these registers for the current process. If this is the case the system would be rather slow on most
machines.

Synchronisation between processes is carried out exclusively by the 'P’ and V' operations on semaphores as
defined by Dijkstra®. The implementation of the semaphore linkage to waiting processes is virtually identical
to the implementation in OSCAR. The only difference is that re-scheduling after a "V' operation is done on a
priority basis. This is something worth investigating for OSCAR.

The Input/Output channel implementation appears to take advantage of the fact that interrupt servicing is
carried out at the micro-program level and signalling to the process is achieved at the completion of an
operation by performing the 'V' operation (RAISE) on a special semaphore. This semaphore is located in the
Work Area (TCB) of the process which started the transfer. This appears to be an odd way of doing it,
because in the earlier description on the implementation of semaphores it is stated that the address of the
Work Area (TCB) is stored in the semaphore. Maybe the Work. Area simply provides a convenient spot
which is available dynamically.

46

Procedures are stored in unique segments and may be used re-entrantly. A calling system, a means of passing
arguments and a push down stack is implemented. Not much detail is given.

One very good conceptual feature of the Venus system is the systematic use of the idea of Levels of
Abstraction as defined by Dijkstra®. This, the authors claim should lead to a better design with greater clarity
and fewer errors. I agree wholeheartedly with this, and have shown that the OSCAR facilities are similarly
structured.

The following levels for virtual devices have been used:

Level 0: Micro-program without real-time constraints
Level 1: Software controllers - one for each device
Level 2: Interface between User and Controller

Several other levels are presented.

3.3.1 Critical Comments on the Venus System

It is difficult to make valid criticism of a system one has not used. But the following points are felt to be
shortcomings in the system which have been improved upon in the OSCAR system.

The stated exclusive use of semaphores for synchronisation is felt to be the biggest weakness. Although
semaphores are very powerful, and Dijkstra attempts to prove that they are sufficient for all synchronising
functions, it is difficult to see how to implement the case where one process waits on one of a number of
events. Mention is made of this case in the paper and a mechanism called 'queues’ is used for this purpose.
Queues are operated on by 'Send' and 'Receive' operations. Queues are held in a common segment called
'queue segment'. This sounds a very similar scheme to 'RTOS' channels. For some reason the authors exclude
this mechanism from process synchronisation. I suspect that this is a second means of process
synchronisation and 'Queues' perform a similar function to 'Event Control Words' in OSCAR.

The arbitrary limitation to 16 processes is probably dictated by the micro-program of which details are not
available. For real-time control it is easy to visualise systems with many more than 16 concurrent processes.
These need not all be available with hardware context. But the Operating System should allow scheduling of
extra low priority processes which may share the lowest priority hardware Work Area (TCB). Such low
priority Processes are generally not time critical and the overhead in swapping TCB's would not be high.

The so called hardware implementation of the VENUS functions is carried out by micro-program. The use of
micro-programmed processors for real-time work is a problem which T have not resolved to my own
satisfaction. Micro-programming makes it possible to implement operations such as described above with
relative ease compared with the design of these operations in hardware without micro-program. Until the
need for these operations becomes generally recognised for building operating systems, micro-programming
provides the most efficient solution. But with the imminent replacement of core memory with semi-
conductor main memory I foresee that the machine instructions will be executed just as fast as present day
microinstructions. Delay in gating circuits is going to be the limiting factor. Speed is always important, and
the cost of a mass produced central processor which is designed for minimum execution time of all machine
instructions will be negligible compared with a simpler micro decoder and micro memory which has to run at
least 5 times faster than main memory to be of any use. Execution speed of some micro-'programmed
instructions can be very slow, and often the use of a more powerful main instruction set working at micro-
instruction speed will provide a faster solution. Operations such as 'P' (LOWER) and 'V' (RAISE) should
actually be included in any instruction set.

47

3.4 The Data General Real-Time Operating System (RTOS)

This is a system for the Nova family of computers' which became available in Australia towards the end of
1971. Tt fulfils a need similar to OSCAR and it draws on a common background. The introduction to the
Manual summarises the aims of the system:

RTOS consists primarily of a small, general-purpose multi-programming monitor designed to control
a wide variety of real-time input/output devices. User programs are relieved from the details of I/O
timing, data buffering, priority handling and task scheduling. In addition they are provided with a
parallel processing capability plus inter-task communication and synchronisation facilities.

RTOS Tasks are organised in four states. Executing, Pending, Suspended and Dormant. Only the last state is
new for OSCAR users and it simply describes the condition when the Task Control Block is on a list or pool
of unused or available blocks.

The Task Control Block in RTOS only saves the PC, Accumulators and Carry. It also contains a Priority
number which can be varied from the Task and a Link Word. No private memory locations are provided.

RTOS provides eight meta-instructions for users. Whenever a meta instruction is executed control is returned
to the user via the RTOS task scheduler. A brief listing of these meta instructions is:

. I0X

<logical device#>

<device control word>
<first data item pointer>
<data item count>

<error routine address>
<normal return>

This call initiates Input/Output on the device specified according to a scheme encoded in the device control
words and to a buffer described by the pointer and counter. Return is not made until the transfer is complete.
This type of call has the following shortcomings in a control environment:

1. It allows only for data transfer not for control actions.

2. Buffer locations and size has to be determined at assembly time. There is no facility for using
dynamic storage.

3. The operation is at too high a level « No lower level operations are available to users. Thus simpler
operations such as transfers of single bytes are too cumbersome and time consuming.

.FORK

<new task priority>

<new task address>

<next statement in current task>

This call is the only way of generating more tasks. Because the call has the appearance of a branch
instruction, there is a temptation to generate new tasks all the time. This is time consuming. The examples
given in the RTOS manual do exactly this, so I feel my fears are justified.

.QUIT
<next statement>

This call places a task in the dormant state. The recommended way of executing a task in parallel with
Input/Output is the following abbreviated coding sequence:

48

.FORK ; CREATE A PARALLEL TASK
. I0X ; DO I/0
.QUIT ; DELETE TASK WHEN I/O COMPLETE

; CARRY ON PARALLEL PROCESSING

NOTE: For every time this code is executed the main stream is shunted to another task. It is often difficult to

see in RTOS programs what code belongs to which Task and to keep track of parallel operation. The
programs still look like a conventional serial program.

.PTY
<New Priority Level>
<next statement>

This operation alters the priority of a task dynamically.

WAIT
<# of clock cycles>
<next statement>

This operation is used to delay the execution of the current task for a specified time interval. It is the only
way of accessing the Real Time Clock. Again I feel this operation is at too high a level and does not allow
the user enough scope to do simpler things with the real-time clock. Maximum clock rate is 100 Hz.

XMIT
<Channel #> or @<Channel #>
<next statement>

RCV
<Channel #>
<next statement>

This is a complementary pair of operations which are provided for the purpose of Task synchronisation.
The . XMIT command causes transmission of a 'synchronisation signal' over the specified channel. If an '@’
sign is present in the channel number argument, the Task will be placed in the suspended state until the . RCV
command on the same channel has been executed. Otherwise the Task will be allowed to continue. Upon
executing the .RCV command, the current Task is placed in the suspended state until the signal is received, at
which time it will be made pending and become available for execution again. A fixed number of channels
(usually 8) must be set at system generation time. These are all the channels that are available to users.

The following sequence is the recommended way of implementing Conways FORK-JOIN operations:

v

.FORK

¥

JXMIT

<NN> oy

QUIT T =—s .RGV
<NN> .
3
0

49

I would regard such schemes as a waste of time in an environment in which only one processor is available.
Conway created this structure for allowing the use of more than one processor on one problem. In OSCAR a
structure is developed for allowing one processor to do a number of problems at the same time. RTOS does
not emphasise this point enough.

The final operation is:

.SBRK
<Character code (ASCII)>
<return>

This instruction is not intended to function as a general purpose meta-command. Its use is primarily intended
for the operation of a keyboard orientated executive. Its operation has to be set up at system generation time.
Usually a Teletype interrupt service is enabled for the Break feature, and a special task is created which is
suspended with the .BRK call until the character in the call is keyed on -he Teletype. Then all other tasks
waiting for I/O on the Teletype are made dormant and the special break task is made active.

This again is a very high level and specialised operation which could be implemented very easily with the
basic functions of OSCAR. Because these are not available in RTOS, this high level function becomes
necessary. To illustrate the point I will show how the same facility could be implemented under OSCAR:

* In the Interrupt service routine for each Teletype Keyboard which is to be allowed to cause a break,
test the character transmitted by the keyboard after the interrupt against the break character, which
must be stored at some convenient location. If the character received is the break character, POST a
special EVENT CONTROL WORD which may be called BRKEC for example. The character is not
treated as data from then on.

* Provide a special Task which carries out the function of the Keyboard Executive. After initialisation,
this task is made to WAIT on the EVENT CONTROL WORD BRKEC. Thus if the break code is
typed on a keyboard this Task is activated.

* If a number of keyboards may cause a break to occur, the POSTing in the Interrupt service routine
may store a device identification in this POST code section of BRKEC. The Keyboard Executive
Task can test this code.

Since RTOS is a system on the same computer I am working on, actual hands on experience of the system
was possible. T have coded a number of test programs and tried to compare them with OSCAR. For this
reason any criticism can be much more detailed.

The following features were found to be inadequate:

1. Teletypes and Teletype like devices were not treated as separate Keyboard and Printer devices but as
a composite. This introduces a number of logical difficulties which need not be there. Since this is
the most complicated device, it is seen as the prototype and much of this complication is carried
across to single devices such as the Line Printer.

2. The system is rather long. It is in excess of 2,000 words against 600 for OSCAR. Execution speed is
slower. The basic overhead for each interrupt is 70ps as against 14ps in OSCAR.

3. The system is monolithic, despite claims to the contrary. It consists of one relocatable program.
Included in the 2,000 words are the complete 10X package and one Teletype driver. Neither of these
may be left out if not required. More Teletype or other device drivers require more relocatable
programs and more space.

50

4. Space and time is wasted by saving the processor status in a block reserved in each device service
routine when an interrupt occurs, and then transferring this status to the TCB if this interrupt leads to
a change of Tasks.

3.5 HP 2005A Real Time Executive System

This is a system for the HP 2116 B computer. It has a task structure which is very similar to RTOS, although
the word task or process is not used. The manual talks about parallel programs and the name given to the
TCB is the Program Identification Segment. It again recognises four states:

1. Execution

2. Suspended
3. Scheduled
4. Dormant

I/O processing goes a step further than in RTOS by allowing the stacking of I/O requests. This is
implemented in OSCAR via Double Ended Queues.

An Operator Keyboard Monitor is an intrinsic part of this system. The operator can change program status,
operating environment and load, start, and stop programs. This feature is at a higher level again than the
RTOS BRK feature and in my view should be a separate facility, which may be used if it is wanted.

3.6 The HP 12659A DACE System

This system is called a Data Acquisition and Control Executive (DACE) which can be run on 2114A, 2115A
or 2116B computers with 8K Memory.

It is organised on a so called Task structure, but a DACE Task has a different connotation to a process. In
DACE a task is a program, which is activated at regular intervals as defined by a real-time clock. An Interval
time and a Phase time are task parameters. These are usually set at system generation time but can be altered
dynamically or through the system keyboard. The scheduling time can only be set in seconds. No finer
resolution is possible. The manual gives examples of tasks scheduled every 30 seconds. This time looks
typical.

Examples of tasks that may be scheduled are Data Acquisition scans and execution of control algorithms at
regular intervals. Character input and output is via a buffered interrupt driven module.

The Description of Tasks in this system emphasises the serial nature of the programs. Each Task when
scheduled will start at a specified starting point, not at the place where it last stopped as in OSCAR. The Task
will then run to its finishing point which is coded in some way. For testing purposes a Task may be run from
start to finish once by a command from the system console.

The system is compatible with a FORTRAN II and ALGOL run time library and formatter which is very
useful. But this means that the system uses 80% of memory in an 8K system leaving only 2K words for User
programs. This software package cost $1000 in 1969.

There are a number of similar systems on other computers which vary in small details but which are mainly
driven by a real-time clock scheduler.

Examples are CAMP for the LN5100 processor, RSX-15 for the PDP-45 and MOS for the Varian 620. There
is also RTX for a SPC-42 processor.

51

RSX-45 and a recently released system RSX-11 for the PDP-11 are probably the most versatile systems
because they do contain system calls which would allow synchronisation with arbitrary events. The
presentation of these system stresses the 'scheduling at regular intervals' approach. I have seen no system
except 'Venus' which incorporates semaphores, allows scheduling of tasks from user interrupt service
routines and implements a general double ended queue system for data buffering. None of the systems seen
incorporate a real-time clock routine which provides both interval counting and event scheduling and is fully
re-entrant so that it may be used for several pulsed inputs simultaneously. Also no system has been seen
which allows accurate frequency measurement from pulsed inputs.

3.7 VORTEX. Varian Omnitask Real Time Executive

VORTEX is a Real-Time executive which combines user written tasks with a Job control processor which
can handle language processors as background tasks. To allow full use of foreground background processing
a Varian 620 computer with 16K of memory and a rotating disc file is required.

The system is organised around a Task Scheduler and an Interrupt handler. Task Control Blocks are threaded
(a word used in the VORTEX manual) on two lists. These are the busy list and the unused list. TCB's on the
unused list are dormant. As Tasks are scheduled a TCB is taken from the unused list and threaded onto the
busy list. The threading operation is carried out according to a priority number which is supplied as a
Scheduling parameter. There are two system tasks which may be scheduled under certain conditions.

1. SAL is a memory allocation module which is activated if a task is not resident in memory.
2. ERROR is activated for a number of common errors.

There is a space for a variety of non-resident foreground and background tasks. Background tasks may be
pre-empted once, if the space they occupy is required by a foreground task. The resident portion of the
system is comparatively large. 0.5K in low memory plus 6K in high memory.

The communication between users and the real-time executive is via system macros which, when expanded
have the general form of a subroutine call to the system with a number of arguments which follow this call.
The first argument gives the function which is required. This is executed interpretively by the system. The
other arguments vary for the different calls. Such a scheme must be fairly slow compared with direct
subroutines for each function which is used in OSCAR.

Functions which are available in VORTEX and the nearest equivalent in OSCAR or other systems are listed
below:

FUNCTION EQUIVALENT DESCRIPTION

SCHED FORK Schedule a task

SUSPND (WAIT) Suspend a task

RESUME (POST) Resume a task

DELAY DELAY-WAIT Delay a task

PMSK) Store hardware priority mask register
TIME TIM Obtain time of day

OVLAY) Load and/or execute an overlay segment
ALOC) Allocate a re-entrant stack

DEALOC De-allocate the current re-entrant stack

EXIT EXIT Exit from a task upon completion

52

ABORT Abort a task
IOLINK Link background I/O

Most of these operations are self explanatory in the context of this paper but the following comments are in
order about the SUSPND and RESUME operation.

The SUSPND function suspends the execution of a task making the call. The task can be resumed only by an
interrupt or a RESUME call in another task. The type of resumption which is anticipated is in an argument of
the SUSPND call. If interrupt resumption is specified, there is no indication which interrupt is going to do it.
This is a function of previously set up information in Interrupt event word of the TCB which links a Line
Handler (Device Interrupt handler) and the task when the particular line interrupts. The Resume call in
another task must nominate the task which is to be resumed. No mention is made in the write up what
happens when a SUSPND call is made and the Interrupt or the RESUME call it is suspended for has already
occurred. I suspect this is not allowed, and this would make the writing of tasks much more difficult under
VORTEX.

The DELAY operation only allows the calling task to be suspended, and the time of resumption is computed
from the time the call is made. This is similar to the RTOS Delay call. The VORTEX call does allow an
interrupt to cause earlier resumption. Thus DELAY can be used to time out a device. In OSCAR this must be
done with a multiple WAIT operation.

There are a number of 1/0 control functions in VORTEX which are coded at a higher level in OSCAR. The
most important of these are:

OPEN, CLOSE, READ, WRITE, STAT

The last of these is interesting. STAT refers to the address of a READ or WRITE macro and tests the status
of the transfer. If this transfer is not complete it transfers to a user nominated busy routine. The VORTEX
manual warns that this function should not be used in foreground tasks because it hangs up the System. The
completion of I/O functions cannot be tested in any other way, so the only way to allow parallel processing
of I/0 and other computations is to generate parallel tasks with a SCHED (FORK) function. A general WAIT
operation such as is used in OSCAR is clearly missing. Also missing are operations to mark the boundaries
of critical sections such as LOWER and RAISE.

This system is extended to be a full Disc Operating system. The Job Control Language and the means for
managing background tasks merit further study if an extension for OSCAR in this direction is undertaken.

3.8 The Tenex Time Sharing System

This is a paged time sharing system for a PDP-10 computer . This system is unusual in that the use for this
system is mainly a multi-terminal computing facility. As such it is not very different to users than a number
of other time sharing systems. But the implementation is very different because it is based on a state of the
art virtual machine and a multiple process capability with appropriate communication facilities.

This confirms a belief I have, that the use of systems using parallel processing is not confined to real-time
control applications, but that these schemes allow the implementation of very powerful general purpose
computing facilities with attributes which users would like to have. At present there is no satisfactory mini-
computer system which will allow simultaneous Fortran compilation and execution of other programs, such
as Basic. This problem would be solved by using a parallel process orientated system such as OSCAR as the
kernel of a more general Operating System.

53

Tenex is such a system for a large processor. A number of changes were made to the hardware of the
processor. The most important of these is a paging mechanism. Enough information is kept about each page
to determine if it is in core, if it has been modified or not, (this saves copying back to disc) and if a shared
page is about to be modified. If it is, a private copy will be generated. This allows the running of non-pure
procedures as if they were re-entrant.

No mention is made of the implementation details of process synchronisation. All input output is carried out
through the executive in a fairly standard manner. The implementation of File Handling is worth looking at.
Being a system which may have many simultaneous compute bound processes a fairly sophisticated
Scheduler is used. It is based on the concept of Occupancy and the paper provides many useful hints on how
to implement such a system.

54

4 CONCLUSIONS

The time involved in planning and coding the first version of OSCAR took 4 months during the latter part of
1970. During the 2 years since then a number of modifications to the system have been made. In particular
Semaphores and Double Ended Queues were added. Experience with the system has shown that it is easily
picked up by programmers. The functions, particularly the synchronising primitives, are at first unfamiliar
but with a little practice they are used as intended. Thus parallel programming as against uni-programming
comes naturally to most programmers when a task structured system such as OSCAR is available to them.
There is still a certain amount of resistance to going all the way with the parallel approach. Programmers
traditionally join their real-time--routines into a string which is repeated at regular intervals (usually once per
second). In the parallel approach each routine would be coded as a separate task with its own repetition time.
It can be argued that this is not quite as efficient as the one second loop approach. But the increase in
flexibility would often outweigh this slight decrease in efficiency.

The effort in producing this system is felt to have been worthwhile. Such a system as the Ore Sorter could
never have been made fast enough with systems such as RTOS which have become available in the
meantime.

The work was influenced by the academic discipline. This has resulted in a broad survey of the field before
the actual implementation of a system was started. The work was also influenced by the constraints of
industry. This has resulted in a system which has had to stand up to the tests of being used in a real and
generally hostile environment. OSCAR hopefully contains the best of the current state of the art in the real-
time operating system field and represents an implementation which is up to engineering standards. The fact
that it is still up to date after two years is at least gratifying.

Some extensions of OSCAR which are useful have been outlined in the body of this thesis. The usefulness of
this and similar operating systems on small computers could be made even greater if the computer
architecture were modified to implement some of the lower level operations which must now be done by
software. This would speed up execution significantly. Some computers already have such hardware. For a
Nova the following additional hardware facilities are recommended:

1. Extended memory mapping facility allowing 3 maps and 3 sets of accumulators associated with 3
processor states (i) Interrupt Processing, (ii) Executive Processing and (iii) User Processing.

2. Allow I/O instructions only during the Interrupt Processing and Executive Processing states. In
the User Processing state these instructions are replaced by a general Supervisor Call (SVC)
whose execution unconditionally traps to Executive Processing Mode and three conditional trap
instructions which have the format of Memory Reference Instructions without Accumulator in the
Nova Instruction set. These are:

(i) Increment and Trap if Minus or Zero. This is used to implement the 'RAISE'
operation on a Semaphore.|

(ii) Decrement and Trap if Minus. This is used to implement the 'TOWER'
operation of a Semaphore.

(iii) Increment and Trap if Positive. This is used to implement the "WAIT
operation on an Event Control Word. This scheme requires a slightly different
format for Event Control Words.

55

A fourth instruction 'Decrement and Trap if Zero or Positive' would complete the set and would do the
'POST' operation. This could be implemented on other machines which have more instructions to spare. This
instruction is mainly used in Interrupt Service, where a Trap does not apply.

With the aid of these extra instructions and a hardware Supervisor Call linkage all the occupancy overhead of
Task synchronisation operations would be reduced drastically. Particularly semaphores could be used much
more freely. In most instances critical section are not critical and there would be no hold up. It is just the odd
case which happens say once in a thousand, in which a semaphore must catch another task using a critical
section.

The simple Wait operation which is used frequently in I/O routines is also speeded up. A Multiple Wait must
still be specially written.

It is hoped that the general acceptance of a process or task oriented way of programming will induce
manufacturers to provide computers with these or similar facilities.

56

4.1 References

1.

10.
11.

12.

13.

14.

15.

16.

17.
18.
19.
20.

21.

Wirth, N., On Multiprogramming, Machine Coding and Computer Organisation. Comm. ACM 12, 9
(Sept. 1969), pp 489-498.

Wegner, P., Programming Languages, Information Structures, and Machine Organisation. McGraw
Hill, New York, 1968.

Digital Equipment Corporation, Introduction to Programming.

Habermann, A. N., Synchronisation of Communicating Processes. Comm. ACM 15, 3 (March 1972),
pp 171-176.

Dijkstra, E. W., Co-operating sequential processes. In Programming Languages, F. Genuys, Ed.,
Academic Press, New York, 1968, pp 43-1129

Lampson, B W. , A Scheduling Philosophy for Multiprogramming Systems. Comm. ACM 11, 5
(May 1968),.pp 347-359.

IBM Operating System/360. Concepts and Facilities. In Programming,-Systems and Languages, S.
Rosen, Ed., McGraw-Hill, .New York, 1967, pp 598-646.

Conway, M. E., A Multiprocessor System Design, Proc. FJCC 1963, pp 139-146.

Dijkstra, E. W., Programming considered as a human activity in Proc. IFIP Congress 65, vol. 1, 213-
2170

Data General Real-Time Operating System, Data General Corporation, Southboro Massachusetts.

Benson, D. and Others, A Language for Real Time Computing Systems. British Computer Society
report of On-line computing systems and . languages working party.

Dijkstra, E. W., The Structure of the "THE"-Multiprogramming, System. Comm. ACM 11, 5 (May,
1968), pp 341-346.

Liskov, B. H., The design of the Venus operating system. Comm. ACM, 15, 3 (March 1972),
pp 144-149

Dennis, J. B. , and Van Horn, E. C. , Programming semantics for multiprogrammed computations
Comm ACM 9, 3 (March, 1966), pp 143-155

Borrow, D. G. , Burchfiel, J. D. , Murphy, D. L. , Tomlinson, R. S. TENEX, a paged time sharing
system for the PDP-10, Comm ACM 15, 3 (March 1972) pp 135-143.

Varian OinniTask Real Time Executive (VORTEX), 98A9952 (Sept 1972) Varian Data Machines,
Irvine, California

Dwyer, F. B, Thompson, R. L. , Wulff, E., High Speed Sorting, Australian Patent 425088.
Phister, M, Logical Design of Digital Computers, John Wiley and Sons, Inc., New York.
Williams, B., Private Communication.

Turing, A.M., Can a Machine Think, in the World of Mathematics, ed.-Newman,, T. R., Vol. 4, pp
2099-2123. George Allen and Unwin Ltd.

How to use the Nova Computers, Data General Corporation, Southboro Massachusetts, 1972.

5 APPENDIX

The derivation of instruction mnemonics for NOVA computers is as follows?":

IFEQ
IFNE
IFGE
IFLT
IFGT
IFLE

MULtiply
DIVide
The following mnemonics have been added to make arithmetic tests easier to interpret:
s,d SUB# s,d,SNR ;nextifs== IFZ s,- MOV#
s,d SUB# 5s,d,SZR ;nextifs !=d IFN s,- MOV#
s,d ADCZ# s,d,SNC ;nextifs>=d IFZP s,- MOVL#
s,d ADCZ# s,d,SZC ;nextifs < d IFM s,- MOVL#
s,d SUBZ# s,d,SNC ;nextifs > d IFP s,- NEGZL#
s,d SUBZ# s,d,SZC ;nextifs<=d IFZM s,- NEGZL#
; else skip IFM1 s,- COM#
IFNM1 s,- COM#
d,d SUBC d,d ; clear acc d

CLA

‘s’ is source Acc 0, 1,2 or 3;

LoaD
STore

Increment
Decrement

JuMP
Jump to SubRoutine

COMplement \
NEGate :
MOVe

INCrement

ADd Complement
SUBtract

ADD

AND /

SKiP
Skip

} Accumulator

} and Skip if Zero

for carry bit
base value use

on Zero } Carry
omNonzero Result

if Either is Zero
if Both are Nonzero

No 10 transfer
I A L d
Data{ - } B ; buffer -

Out C
SKiP if {g‘g’e} is {I;eorzzem
READ Switches
IO ReSeT
HALT
INTerrupt Acknowledge
MaSK Out
INTerrupt ENable
INTerrupt DiSable

‘d’ is destination Acc 0, 1, 2, or 3;

57

current carry
Zero
One

Complement of current carry

~

Start
Clear
special Pulse

~

shift Left
shift Right
Swap bytes

s,-,SNR
s,-,SZR
s,-,SNC
s,-,S7.C
s,-,SEZ
s,-,.SBN
s,-,.SNR
s,-,SZR

{#

; next if s ==
;nextifs =0
;nextif s>=0
;nextifs < 0
;nextifs > 0
;nextif s <=0
;next if s ==-1
;nextifs!=-1
; else skip

‘- Acc not used (usually same as s)

The following pages contain the full listings of the OSCAR system in Nova assembler code.

100

0001 .MAIN
01
02 s INTERRUPT HANDLER AND TASK SCHEDULER MK. V
03 H
04
05 ; E. WULFF 7-APR-71
06
07 3 TASK CONTROL BLOCK DISPLACEMENT ALLOCATION
08
09 000000 .DUSR TAC3= 0 3SAVE AC3
10 000001 .DUSR TAC2= 1 s " AC2
11 000002 .DUSR TACl= 2 s " ACl
12 000003 .DUSR TACO= 3 3 " ACO
13 000004 .DUSR TPCC= 4 s " PC+CARRY
14 000005 .DUSR TPM= 5 s "' PRIORITY MASK
15 000006 .DUSR TL6= 6 s " LOC 6 TEMP. REGISTER
16 000007 .DUSR TL7= 7 s " LOC 7 WORK AREA POINTER
17 000010 .DUSR TL20= 10 ; " LOC 20 AUTO INC REGISTERS
18 000011 .DUSR TL21= 11 3 " LOC 21 OR TEMP. REGISTERS
19 000012 .DUSR TL30= 12 s " LOC 30 AUTO DEC REGISTER
20 000013 .DUSR TL31= 13 3 " LOC 31 STACK POINTER
21 000014 .DUSR TL40O= 14 s " LOC 40 GET CHAR. POINTER
22 000015 .DUSR TL4l1= 15 s " LOC 41 PUT CHAR. POINTER
23 000016 .DUSR TWC= 16 sWAIT COUNT OR SEMAPHORE LINK
24 000017 .DUSR TBP= 17 3sBACK POINTER
25
26 000020 .DUSR TL= 20 3TASK CONTROL BLOCK LENGTH
27
28 ;s THE LENGTH OF THE PRIVATE MEMORY REGISTER STORAGE
29 ;s IS TL-10.
30

31 .END

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
b
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59

101

0001 START
3 SYSTEM START UP
; ———————— ———— S——— —
3 TASK SCHEDULER MK. V
; E. WULFF 9-MAR-72
.TITL START
.ENT BEGIN
.EXTD FTP,ATCB,TS3
000002 .LOC 2 3 SYSTEM START AND RESTART LOCATION
00002 002000-START: JMP @BEGIN
.ZREL
00000-000000'BEGIN: ST
.NREL
00000'062677 ST: IORST s RESET ALL I/0
00001'030001$ LDA 2,FTP ; HEAD OF TASK QUEUE
00002'050020 STA 2,20
00003'036020 L1: LDA 3,@20 ; NEXT TCB ADDRESS
00004'174014 IFNM1 3,3
00005'000411 JMP L3 3 LEGITIMATE TASK ADDRESS
00006'030020 LDA 2,20 3 PRESENT ENTRY POINTER
00007'021001 L2: LDA 0,1,2 ; NEXT ENTRY
00010'041000 STA 0,0,2 ; STORE IN THIS ENTRY
00011'151400 INC 2,2
00012'101014 IFN 0,0 s TEST IF END OF LIST
00013'000774 JMP L2 3 NO - RE-WRITE FURTHER
00014'014020 DSZ 20 3 MOVE POINTER BACK
00015'000766 JMP L1 3 TRY ENTRY AGAIN
00016'165125 L3: MOVZL 3,1,SNR
00017'000424 JMP L5 s END OF TASK QUEUE
00020'125220 MOVZR 1,1 3 BIT O CLEARED
00021'044006 STA 1,6 ; TEMPORARY SAVE
00022'030430 LDA 2,MIL ; 1 - LENGTH OF TCB
00023'146400 SUB 2,1 s POINT TO ICW-1
00024'044021 STA 1,21
00025'026021 LDA 1,@21 ;s ICW
00026"'102460 Lé&: SUBC 0,0
00027'125122 MOVZL 1,1,SZC ; TEST BIT IN ICW
00030'022021 LDA 0,@21 : PICK UP INITIAL VALUE
00031'041400 STA 0,0,3 ;3 STORE 0 OR INITIAL VALUE
00032'175400 INC 3,3
00033'151404 INC 2,2,SZR ; COUNT
00034'000772 JMP L4

0
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

0

ATC
BEG
FTP
L1
L2
L3
L4
L5
L6
MTL
ST

002 START

00035'034006
00036'030020
00037'051417
00040'137000
00041'055000
00042'000741

00043'0300018L5:
00044'050020

00045'036020 L6:
00046'175112
00047'000776

00050'054002%
00051'002003$%

00052'177761 MTL:

000002 .END
003 START

B 000002$X

IN 000000-
0000018$X
000003'
000007'
000016"
000026'
000043"
000045'
000052"'
000000"'

START 000002

IS3

000003$X

2/15
1/16
1/25
1/28
1/33
1/30
1/52
1/43
2/11
1/47
1/20
1/16
2/16

LDA
LDA
STA
ADD
STA
JMP

LDA
STA

LDA
MOVL
STA

JMP

1-TL

#

START

1/20
2/08
1/40
1/37
1/42
1/58
2/08
2/13
2/18
1/24
2/20

102

3,6
2,20
2,TBP,3
1,3
3,0,2
Ll

2,FTP
2,20

3,@20
3,3,5ZC
L6

3,ATCB
@rs3

b

.
s

b

FIX TASK QUEUE ENTRY
AND BACK POINTER

ICW BIT 15 =) BIT 0O OF
TASK QUEUE ENTRY

3 SEARCH FOR 1ST ACTIVE TASK

INITTALISE ACTIVE TCB POINTER

s ENTER TASK SCEDULER

s ASSEMBLE WITH CORRECT ASSEMBLER

s SYSTEM START ADDRESS

2/06

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

0001 TQ

00000-000023"

000020
00020'005400

00021'000006
00022'101400
00023'000006

00024'177777
00025'177777
00026'177777
00027'177777
00030'177777

we

Ve Ve Ve Ve Ve Ve Ve Ve we Ve

Ve Ve Ve Ve we Ve

103

TASK QUEUE & DUMMY BACKGROUND TASK

TASK SCHEDULER MK. V

E. WULFF 8-APR-71
MODIFIED 16-MAR-72

THIS ASSEMBLY PROVIDES THE COMPLETE TASK
QUEUE. INDIVIDUAL ENTRIES ARE LOADED BY THE
RELOCATABLE LOADER AS REQUIRED. THE LAST ENTRY
IN THE TASK QUEUE IS BACKGROUND AND THIS

WILL ALWAYS BE ACTIVE. ANY ENTRIES WHICH

ARE NOT DEFINED BY THE USER ARE LOADED AS
177777 BY THE REL. LOADER. THESE ENTRIES

WILL BE EXTRACTED BY THE SYSTEM START PROGRAM.
THE TASK QUEUE WILL THUS BE CONSOLIDATED

TO INCLUDE ONLY TASKS ACTUALLY REQUIRED.

BACKGROUND COMPLEMENTS CARRY APPROXIMATELY
TWICE A SECOND ON A NOVA
10 TIMES A SECOND ON A SUPERNOVA
WHEN THE SYSTEM IS LIGHTLY LOADED.
THIS PROVIDES A HANDY VISUAL INDICATION THAT
THE SYSTEM IS RUNNING CORRECTLY.

LTITL TQ

.ENT FTP,TCBZZ ,END

« EXTN
« EXTN

.EXTN TCBS,TCBT,TCBU,TCBV,TCBW,TCBX,TCBY,TCBZ

«ZREL

FTP: STQ-1 sFIRST TASK POINTER

-NREL

H

s BACKGROUND TASK

s TASK CONTROL BLOCK

TCBZZ: .BLK 20

1B4+1B6+1B7 ; INITIALISATION CONTROL WORD
6 ; PC - BACKGROUND PROGRAM
INC 0,0 ; L6 — EXECUTES AT LOC 6
JMP 6 3 L7 - AND LOC 7

; TASK QUEUE

STQ: TCBA ; TASKS IN ALPHABETICAL ORDER
TCBB ; TO ESTABLISH PRIORITY
TCBC
TCBD
TCBE

TCBA,TCBB, TCBC,TCBD, TCBE,TCBF , TCBG,TCBH, TCBI
TCBJ , TCBK, TCBL , TCBM, TCBN, TCBO, TCBP , TCBQ, TCBR

104

0002 TQ
01 00031'177777 TCBF
02 00032'177777 TCBG
03 00033'177777 TCBH
04 00034'177777 TCBI
05 00035'177777 TCBJ
06 00036'177777 TCBK
07 00037'177777 TCBL
08 00040'177777 TCBM
09 00041'177777 TCBN
10 00042'177777 TCBO
11 00043'177777 TCBP
12 00044'177777 TCBQ
13 00045'177777 TCBR
14 00046'177777 TCBS
15 00047'177777 TCBT
16 00050'177777 TCBU
17 00051'177777 TCBV
18 00052'177777 TCBW
19 00053'177777 TCBX
20 00054'177777 TCBY
21 00055'177777 TCBZ
22 00056'000000"' TCBZZ ; BACKGROUND
23 00057'000000 0 3 MARKER FOR START
24
25 END: s 1ST FREE LOCATION
26
27 .END
0003 TQ
END 000060" 2/25
FTP 000000~ 1/37
STQ 000024"' 1/37 1/55

TCBA 000024'X 1/55
TCBB 000025'X 1/56
TCBC 000026'X 1/57
TCBD 000027'X 1/58
TCBE 000030'X 1/59
TCBF 000031'X 2/01
TCBG 000032'X 2/02
TCBH 000033'X 2/03
TCBI 000034'X 2/04
TCBJ 000035'X 2/05
TCBK 000036'X 2/06
TCBL 000037'X 2/07
TCBM 000040'X 2/08
TCBN 000041'X 2/09
TCBO 000042'X 2/10
TCBP 000043'X 2/11
TCBQ 000044'X 2/12
TCBR 000045'X 2/13
TCBS 000046'X 2/14
TCBT 000047'X 2/15
TCBU 000050'X 2/16
TCBV 000051'X 2/17
TCBW 000052'X 2/18
TCBX 000053'X 2/19
TCBY 000054'X 2/20
TCBZ 000055'X 2/21
TCBZZ 000000' 1/45 2/22

105

0001 TS1
01
02 s INTERRUPT HANDLER AND TASK SCHEDULER
03 H
04
05 s PART 1 - THIS SECTION MUST BE LOADED EARLY
06 s WHILE ZREL IS LESS THAN 200
07
08 ; MK, V
09
10 ; E. WULFF 8-APR-71
11 ;s MODIFIED 8-NOV-71 16-MAR~72
12 ;3 INCLUDE DEFI 14~JUL-72
13
14 s VERSION B FOR THE GYPROCK SYSTEM.
15
16 s PROVIDES FOR THE FOLLOWING DEVICES:
17
18 ; 00 ;POWER FAIL
19 H 10-11 ;sTTI, TTO
20 H 13~14 sPTP, RTC
21 ; 24-27 ;FL1-4 FLOW METER 1 TO 4
22 H 50-51 sINI, INO
23
24 .TITL TS1
25
26 .ENT ATCB,RTI,PMASK,COMP,C1,C2,C3,C4,C5
27 .ENT c¢é,Cc7,Cl0,C11,C12,C14,C15,C40,C77,C177,C377
28 .ENT CFR1,SAV0,SAV1,SAV2,SAV3,SAVC, SAVR
29 .ENT TS,TS0,TS1,TS2,TS3,TS4,DST
30 .ENT CL,NC
31 . EXTD BEGIN
32 .EXTN PFLS,TTIS,TTOS,PTPS,RTCS,FL1S,FL2S,FL3S,FL4S, INIS
33 .EXTN INOS,RINT,TSCH,TSCHO,TSCH1,TSCH2,TSCH3,TSCH4
34
35 000100 CL= 100 s BYTE LENGTH OF A DQ. CELL
36 000010 NC= 10 s NUMBER OF DQ. CELLS
37
38 «ZREL
39
40 sDEVICE SERVICE TABLE
41
42 00000-177777 DST: PFLS sPOWER FAIL SERVICE
43
44 00001-177777 PMASK: -1 s INTERRUPT PRIORITY MASK
45 sDEVICE 1 (MDV) CANNOT INTERRUPT.
46
47 sSOME TEMPORARY SAVE REGISTERS
48

49 00002-000000 SAVO:
50 00003-000000 SAV1:
51 00004-000000 SAV2:
52 00005-000000 SAV3:
53 00006-000000 SAvVC: 0
54 00007-000000 SAVR: 0

0
0
0
0

55

56 3 STANDARD I/0 DEVICES

57

58 00010~177777 TTIS sTELETYPE IN SERVICE

59 00011-177777 TTOS sTELETYPE OUT SERVICE

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

AT

0002 Tsl1

00012-000000

00013-177777
00014-177777

00015-177777

00016-177777
00017-177777
00020-177777
00021-177777
00022-177777
00023-177777

00024-177777
00025-177777
00026-177777
00027-177777

00030-000001
00031-000002
00032-000003
00033-000004
00034-000005
00035-000006
00036~-000007
00037-000010
00040-000011
00041-000012
00042-000014
00043-000015
00044~-000040
00045-000077
00046-000177
00047-000377

00050-177777
00051~-177777

00052-077777
00053-100000

0003 1TS1

CB 000012~

106

sACTIVE TASK CONTROL BLOCK POINTER

ATCB: 0

sINITIALISED IN SYSTEM START UP

;DEVICE 13 & 14

PTPS
RTCS

sPAPER TAPE PUNCH SERVICE
sREAL TIME CLOCK SERVICE

sADDRESS CONSTANTS

RTIL: RINT

sRETURN FROM INTERRUPT

sMORE ADDRESS CONSTANTS

TS: TSCH
TSO: TSCHO
TS1: TSCH1
TS2: TSCH2
TS3: TSCH3
TS4: TSCH4

3sTASK SCHEDULER MAIN ENTRY
n "

.
>

n "
n n
" n

we Ve ve Ve

sDEVICES 24 TO 27

SUBROUTINE ENTRY
AUXILIARY ENTRY

SVC ENTRY

POWER RESTORE ENTRY
RESTORE AC2 ENTRY

SERVICE

FL1S sFLOW METER 1
FL2S [" 2
FL3S ;3 " " 3
FL4S [" 4

sUSEFUL CONSTANTS

Cl: 1

C2: 2

C3: 3

C4: 4

C5: 5

Cé6: 6

C7: 7

Cl0: 10

Cll: 11 sTAB

cl2: 12 s LINE-FEED

Cl4: 14 ;s FORM~FEED

Cl5: 15 s CARRTAGE~-RETURN

C40: 40 3 SPACE

C77: 77

Cl77: 177

C377: 377

sDEVICES 50 & 51

INIS
INOS
CFRl: 77777
COMP: 100000
.END
2/04

s INFOTON IN SERVICE
s INFOTON OUT SERVICE

; FRACTION 1

; COMPLETION FLAG

BEGIN
cl
Ccl10
Cll
Cl2
Cl4
Cl15
Ccl177
c2

Cc3
€377
C4
C40
C5

C6

c7
c77
CFR1
CL
COMP
DST
FL1S
FL2S
FL3S
FL4S
INIS
INOS
NC
PFLS
PMASK
PTPS
RINT
RTCS
RTI
SAVO
SAV1
SAV2
SAV3
SAVC
SAVR
TS
TSO
TS1
TS2
TS3
TS4
TSCH
TSCHO
TSCH1
TSCH2
TSCH3
TSCH4
TTIS
TTOS

000001$X
000030~
000037~
000040~
000041~
000042~
000043~
000046~
000031~
000032~
000047~
000033~
000044~
000034~
000035-
000036-
000045~
000052~
000100
000053~
000000~
000024-X
000025-X
000026-X
000027-X
000050-X
000051-X
000010
000000-X
000001~
000013-X
000015-X
000014-X
000015~
000002~
000003-
000004~
000005~
000006—-
000007~
000016~
000017~
000020~
000021~
000022~
000023~
000016-X
000017-X
000020-X
000021-X
000022-X
000023-X
000010-X
000011-X

2/33
2/40
2/41
2/42
2/43
2/44
2/47
2/34
2/35
2/48
2/36
2/45
2/37
2/38
2/39
2/46
2/55
1/35
2/56
1/42
2/26
2/27
2/28
2/29
2/52
2/53
1/36
1/42
1/44
2/08
2/13
2/09
2/13
1/49
1/50
1/51
1/52
1/53
1/54
2/17
2/18
2/19
2/20
2/21
2/22
2/17
2/18
2/19
2/20
2/21
2/22
1/58
1/59

107

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

0001 TS

000000

108

s INTERRUPT HANDLER AND TASK SCHEDULER

5 XXX

s MK. V

; E. WULFF 8-APR-71

;VERSION B
;PROVIDES FOR THE FOLLOWING DEVICES:

.
H
.

3

.
s

00 sPOWER FAIL
10-24 sMAIN GROUP OF DEVICES
50-51 3s2ND GROUP OF DEVICES

;IF ANY OTHER DEVICES ARE CONNECTED
;USE VERSION A.

.TITL

. ENT
« ENT
« ENT
«ENT
« ENT
«EXTD
+EXTN
« EXTN

.LOC

00000 002003$L0:

00001 000000’

.NREL

TS

ATCB,RT,RTI,PMASK,COMP,C1,C12,C15,C77,C177,C377
SAV0, SAV1,SAV2,SAV3, SAVC,SAVR
TS,TS0,TS1,TS2,TS3,TS4,DST
TTIDS,TTODS,PTRDS,PTPDS,RTCDS ,PLTDS , CDRDS , LPTDS
DSKDS , ADVDS , MTADS , DAVDS , DCMDS , INIDS , INODS
FTP,PFLI,PFR
PFLS,TTIS,TTOS,PTRS,PTPS,RTCS,PLTS, CDRS,LPTS
DSKS , ADCVS ,MTAS , DACVS, DCMS , INIS, INOS

0 s START SYSTEM AT LOCATION O
JMP @PFR sENTER POWER FAIL RESTORE
INTS s INTERRUPT VECTOR

s INTERRUPT SERVICE ROUTINE

sFOR SHORT INTERRUPT SERVICE STORE AC@

sIN ITS TASK CONTROL BLOCK , WHICH IS THE

s LOCATION POINTED TO BY THE ACTIVE TASK CONTROL
sBLOCK POINTER

43 00000'056005-INTS:

44

45 00002'003400-

00001'075477

STA 3,@ATCB ;SAVE AC3 IN ACTIVE TCB
INTA 3 s GET DEVICE NUMBER
JMP @sT,3 ;JMP VIA DEVICE SERVICE TABLE

109

0002 TS

01

02 . ZREL

03

04 sDEVICE SERVICE TABLE

05

06 00000-177777 DST: PFLS sPOWER FAIL SERVICE

07

08 00001-177777 PMASK: 1 s INTERRUPT PRIORITY MASK
09 sDEVICE 1 (MDV) CANNOT INTERRUPT.
10

11 000003 .BLK 3 ;MEMORY ALLOCATION AND

12 sPROTECTION SERVICE

13

14 sACTIVE TASK CONTROL BLOCK POINTER

15

16 00005-000000 ATCB: 0 sINITTALISED IN POWER FAIL ROUTINE
17

18 sADDRESS CONSTANTS

19

20 00006-000103'RT: RET

21 00007-000102'RTI: RINT sRETURN FROM INTERRUPT

22

23 sMORE OF DEVICE SERVICE TABLE

24

25 00010-177777 TTIDS: TITIS sTELETYPE IN SERVICE

26 00011-177777 TTIODS: TTOS sTELETYPE OUT SERVICE

27 00012-177777 PTRDS: PTRS sPAPER TAPE READER SERVICE
28 00013-177777 PIPDS: PTPS sPAPER TAPE PUNCH SERVICE
29 00014-177777 RICDS: RTCS sREAL TIME CLOCK SERVICE
30 00015-177777 PLTDS: PLTS s INCREMENTAL PLOTTER SERVICE
31 00016-177777 CDRDS: CDRS 3sCARD READER SERVICE

32 00017-177777 LPTDS: LPTS sLINE PRINTER SERVICE

33

34 00020-177777 DSKDS: DSKS 3sDISK SERVICE

35 00021-177777 ADVDS: ADCVS 3A/D CONVERTER SERVICE

36 00022-177777 MTIADS: MTAS sMAGNETIC TAPE SERVICE

37 00023~177777 DAVDS: DACVS sD/A CONVERTER SERVICE

38 00024-177777 DCMDS: DCMS sTTY DATA MULTIPLEXER SERV.
39

40 sUSEFUL CONSTANTS

41

42 00025-000001 Cl1: 1

43 00026-000012 Cl2: 12 s LINE-FEED

44 00027-000015 Cl15: 15 ;s CARRTAGE RETURN
45 00030-000077 C77: 77

46 00031-000177 C177: 177

47 00032-000377 C377: 377

48 00033-100000 COMP: 100000 ;COMPLETION FLAG
49

50 sSOME TEMPORARY REGISTERS

51

52 00034-000000 SAVO:
53 00035-000000 SAV1:
54 00036-000000 SAV2:
55 00037-000000 SAV3:
56 00040-000000 SAVC:
57 00041-000000 SAVR:

58
59 sMORE ADDRESS CONSTANTS

[cNeNoNoNelo]

01
02
03
04
05
06
07
08
09
10
11
12

0003 TS

00042-000005"TS: TSCH
00043-000003'TS0: TSCHO
00044-000007 'TS1: TSCH1
00045-000020'TS2: TSCH2
00046-000050'TS3: TSCH3
00047-000101"'TS4: TSCH4

110

s TAS

we We Ve Ve we

K SCHEDULER MAIN ENTRY
"

"
n
n

32ND GROUP OF DEVICES

00050-177777 INIDS: INIS
00051-177777 INODS: INOS

SUBROUTINE ENTRY
AUXTLLIARY ENTRY
SUPERVISOR CALL ENTRY
POWER RESTORE ENTRY
RESTORE AC2 ENTRY

s INFOTON KEYPOARD SERVICE
s INFOTON DISPLAY SEVICE

111

0004 TS

01

02 sTASK SCHEDULER

03

04 .NREL

05

06 3SUBROUTINE ENTRY TO THE TASK SCHEDULER

07 sTHIS ENTRY CAN BE USED FROM POSTING ROUTINES.

08

09 00003'060277 TSCHO: INTDS

10 00004'054000 STA 3,0 3 SAVE RETURN

11

12 sMAIN TASK SCHEDULER ENTRY FROM INTERRUPT SERVICE
13

14 00005'034005-TSCH: LDA 3,ATCB ;GET ACTIVE CONTROL BLOCK
15 00006'051401 STA 2,TAC2,3;SAVE AC2

16

17 ;DO TASK QUEUE SCAN NOW IN CASE THE PRESENT

18 ;TASK IS OF HIGHEST PRIORITY.

19

20 sAUXILIARY ENTRY FROM WAIT ROUTINE

21

22 00007'030020 TSCH1: LDA 2,20

23 00010'051410 STA 2,TL20,3;SAVE LOCATION 20

24

25 00011'030001$ LDA 2,FTP ;POINTER TO HEAD OF QUEUE-1
26 00012'050020 STA 2,20 3sUSE AUTO-INCREMENT

27

28 00013'032020 Ll: LDA 2,@20 ;GET QUEUE ENTRY AND INCREMENT
29 00014'151112 MOvVL# 2,2,SZC ;IS IT READY

30 00015'000776 JMP L1 sNO , GET NEXT

31

32 3AC2 CONTAINS ADDRESS OF TCB THAT IS ACTIVATED NEXT
33

34 00016'156415 IFEQ 2,3 sTEST IF ALREADY ACTIVE
35 00017'000460 JMP TAA ;YES

36

37 sENTRY WITH NEW TCB ADDRESS IN AC2. MAINLY FROM
38 s SUPERVISOR CALL.

39

40 00020'045402 TSCH2: STA 1,TAC1,3;SAVE REST OF STATUS

41 00021'041403 STA 0,TAC0,3;AC1 , O

42

43 00022'020000 LDA 0,0 3sGET RETURN ADDRESS FROM LOC 0
44 00023'103200 ADDR 0,0 s SUPERIMPOSE CARRY

45 00024'041404 STA 0,TPCC,3;SAVE RETURN ADDRESS AND CARRY
46

47 00025'020001- LDA 0,PMASK

48 00026'041405 STA 0,TPM,3 ;SAVE PRIORITY MASK

49

50 00027'020006 LDA 0,6

51 00030'041406 STA 0,TL6,3 ;SAVE LOCATION 6

52 00031'020007 LDA 0,7

53 00032'041407 STA 0,TL7,3 ;SAVE LOCATION 7

54

55 00033'020021 LDA 0,21

56 00034'041411 STA 0,TL21,3;SAVE LOCATION 21

57 00035'020030 LDA 0,30 '

58 00036'041412 STA 0,TL30,3;SAVE LOCATION 30

59 00037'020031 LDA 0,31

112

0005 TS
01 00040'041413 STA 0,TL31,3;SAVE LOCATION 31
02 00041'020040 LDA 0,40
03 00042'041414 STA 0,TL40,3;SAVE LOCATION 40
04 00043'020041 LDA 0,41
05 00044'041415 STA 0,TL41,3;SAVE LOCATION 41
06
07 00045'155005 MOV 2,3,SNR ;IS TCB POINTER ZERO
08 00046'002002% JMP @FLI ;YES- CONTINUE POWER FAIL
09 s INTERRUPT SERVICE
10
11 3SET UP STATUS OF NEW TASK
12
13 00047'054005- STA 3,ATCB ;STORE ACTIVE TASK CONTROL BLOCK
14
15 00050'021415 TSCH3: LDA 0,TL41,3
16 00051'040041 STA 0,41 sRESTORE LOCATION 41
17 00052'021414 LDA 0,TL40,3
18 00053'040040 STA 0,40 sRESTORE LOCATION 40
19 00054'021413 LDA 0,TL31,3
20 00055'040031 STA 0,31 sRESTORE LOCATION 31
21 00056'021412 LDA 0,TL30,3
22 00057'040030 STA 0,30 sRESTORE LOCATION 30
23 00060'021411 LDA 0,TL21,3
24 00061'040021 STA 0,21 sRESTORE LOCATION 21
25
26 00062'021407 LDA 0,TL7,3
27 00063'040007 STA 0,7 sRESTORE LOCATION 7
28 00064'021406 LDA 0,TL6,3
29 00065'040006 STA 0,6 sRESTORE LOCATION 6
30
31 00066'021405 LDA 0,TPM,3 ;RESTORE PRIORITY MASK
32 00067'040001- STA 0,PMASK
33 00070'062077 MSKO 0 - 3SET UP MASK
34
35 00071'021404 LDA 0,TPCC,3
36 00072'105142 MOVOL 0,1,SZC ;RESTORE CARRY, SET 1 IN BIT 15
37 00073'121220 MOVZR 1,0 3C=1, USE BIT 15 TO LEAVE C=1
38 00074'040000 STA 0,0 sRESTORE PC IN LOC 0
39
40 00075'021403 LDA 0,TACO, 3;RESTORE ACCUMULATORS
41 00076'025402 LDA 1,TAC1,3
42
43 00077'031410 TAA: LDA 2,TL20,3
44 00100'050020 STA 2,20 sRESTORE LOCATION 20
45
46 00101'031401 TSCH4: LDA 2,TAC2,3
47
48 00102'036005-RINT: LDA 3,@ATCB ;RETURN FROM INTERRUPT
49
50 00103'060177 RET: INTEN
51 00104'002000 JMP @o sRETURN TO USER PROGRAM
52

53 000000 .END LO sSTART SYSTEM AT LOCATION O

ADCVS
ADVDS
ATCB
Ccl
Cl2
Cl15
c177
C377
c77
CDRDS
CDRS
CoMP
DACVS
DAVDS
DCMDS
DCMS
DSKDS
DSKS
DST
FTP
INIDS
INIS
INODS
INOS
INTS
LO

Ll
LPTDS
LPTS
MTADS
MTAS
PFLI
PFLS
PFR
PLTDS
PLTS
PMASK
PTPDS
PTPS
PTRDS
PTRS
RET
RINT
RT
RTCDS
RTCS
RTI
SAVO
SAV1
SAV2
SAV3
SAVC
SAVR
TAA
TS
TSO
TS1
TS2
TS3

0006 Ts

000021-X
000021~
000005-
000025~
000026-
000027~
000031~
000032~
000030~
000016~
000016-X
000033~
000023-X
000023~
000024-
000024~-X
000020~
000020-X
000000-
000001$X
000050-
000050-X
000051~
000051-X
000000'
000000
000013'
000017-
000017-X
000022-
000022-X
000002$X
000000-X
0000038X
000015-
000015-X
000001~
000013~
000013-X
000012~
000012-X
000103'
000102"'
000006~
000014~
000014-X
000007~
000034~
000035~
000036~
000037-
000040~
000041~
000077"'
000042-
000043~
000044~
000045—
000046-

2/35
2/35
1/43
2/42
2/43
2/44
2/46
2/47
2/45
2/31
2/31
2/48
2/37
2/37
2/38
2/38
2/34
2/34
1/45
4/25
3/11
3/11
3/12
3/12
1/32
1/31
4/28
2/32
2/32
2/36
2/36
5/08
2/06
1/31
2/30
2/30
2/08
2/28
2/28
2/27
2/27
2/20
2/21
2/20
2/29
2/29
2/21
2/52
2/53
2/54
2/55
2/56
2/57
4/35
3/02
3/03
3/04
3/05
3/06

113

2/16 4/14 5/13 5/48

2/06

1/43
5/53
4/30

4/47 5/32

5/50
5/48

5/43

0007

TS4
TSCH
TSCHO
TSCH1
TSCH2
TSCH3
TSCH4
TTIDS
TTIS
TTODS
TTOS

TS

000047~
000005"
000003"'
000007
000020"'
000050
000101'
000010~
000010-X
000011-
000011-X

3/07
3/02
3/03
3/04
3/05
3/06
3/07
2/25
2/25
2/26
2/26

4/14
4/09
4/22
4/40
5/15
5/46

114

01
02
03

04

05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

115

00007 '040406 STA
00010'020453 LDA
00011'040405 STA
00012'030002~ LDA
00013'034453 LDA
00014'102620 L3: SUBZR
00015'063400 SKPBN
00016'063700 SKPDZ
00017'101241 MOVOR
00020'101220 MOVZR
00021'010774 1Sz
00022'010774 Isz
00023'101003 MoV
00024'000771 JMP
00025'041000 STA
00026'151400 INC
00027'175404 INC
00030'000764 JMP
00031'020433 LDA
00032'040000 STA
00033'063077 HALT

0001 PFAIL

; POWER FAIL AND RESTART SERVICE

;

; TASK SCHEDULER MK. V

; E. WULFF 8-APR-71

; MODIFIED 17-MAR-72

.TITL PFAIL

.ENT PFLS,PFR,PFLI,DSW

.EXTD RTI,ATCB,TS2,TS3

.EXIN RTCW

. ZREL
00000-000034 'PFR: PFRST ;POWER FAIL RESTART ADDRESS
00001-000006'PFLI: PFLIN ;POWER FAIL INTERRUPT SERVICE
00002~-000067 'DSW: DSWT ;ADDRESS OF 4 DEVICE STATUS WORDS.

.NREL

;ENTER FROM INTERRUPT HANDLER WITH

; INTERRUPT DISENABLED
00000'063677 PFLS: SKPDN CPU sTEST POWER FAIL FLAG
00001'002001$ JMP @RTI ;SPURIOUS INTERRUPT
00002'034002$ LDA 3,ATCB
00003'051401 STA 2,TAC2,3;SAVE AC2
00004'152460 CLA 2,2 ;DUMMY TCB ADDRESS FOR T.S.
00005'002003$ JMP @QTS2 ;STORE STATUS OF ACTIVE TASK

;AND RETURN TO PFLIN

00006'020454 PFLIN: LDA 0,INST+1;SET UP SKP INSTRUCTIONS

0,L3+1

0, INST+2
0,L3+2
2,DSW

3,M4 =4

,0 ; INITIALISE 100000

0,SKP ;SET BIT FOR BUSY OR DONE =1
0 ;CLEAR BIT FOR BOTH 0

4

0,0,SNC ;TEST FOR END OF WORD

0,0,2 ;SAVE IN DSW

2,2 ;NEXT DSW
3,3,SZR ;IS IT THE LAST?

L3 ;NO
0,PFRI ;PICK UP JMP INSTRUCTION
0,0 ;POWER RESTART STARTS AT LOC O

; SHUTDOWN

116

0002 PFAIL
0003 PFAIL
ol
02 ; POWER FAIL RESTART.
03
04 ; ENTER HERE FROM LOC. 0
05
06 00034'062677 PFRST: 1IORST sCLEAR ALL DEVICE FLAGS
07 00035'020424 LDA 0,INST ;SET UP NIOS INSTRUCTION
08 00036040412 STA 0,L2+1
09 00037'022426 LDA 0, @RTCP
10 00040'061014 DOA 0,RIC ;SET CLOCK FREQUENCY
11 00041'030002- LDA 2 ,DSW
12 00042'034424 LDA 3,M4
13
14 00043'021000 L1: LDA 0,0,2 ;DEVICE STATUS WORD
15 00044'025004 LDA 1,4,2 3;DEVICES ALLOWED
16 00045'123400 AND 1,0 ;ELIMINATE UNWANTED DEVICES
17 00046'126620 SUBZR 1,1
18 00047101222 L2: MOVZR 0,0,SZC ;TEST DEVICE STATUS WORD
19 00050'060100 NIOS O ;START DEVICE
20 00051'010777 1SZ 1 sNEXT DEVICE
21 00052'125223 MOVZR 1,1,SNC ;COUNT
22 00053'000774 JMP L2
23 00054'151400 INC 2,2
24 00055'175404 INC 3,3,SZR
25 00056'000765 JMP Ll
26
27 00057'034002$ LDA 3,ATCB ;START TASK THAT WAS INTERRUPTED
28 00060'0020045S JMP @Ts3 3sBY POWER FAIL
29
30 00061'060100 INST: NIOS O
31 00062063400 SKPBN 0
32 00063'063700 SKPDZ 0
33 00064'002000-PFRI: JMP @PFR

34 00065'177777 RICP: RTCW

35

36 00066'177774 M4: =4

37

38 00067'000000 DSWT: O sDEVICE STATUS WORDS
39 00070'000000 0 s INITIALIZED TO ZERO
40 00071'000000 0

41 00072'000000 0

42 00073'177400 177400 ;UNWANTED DEVICES - 0 TO 7
43 00074'177777 177777

44 00075'177777 177777

45 00076'077777 077777 ; AND 77

46
47 .END

0004

ATCB
DSW
DSWT
INST
L1

L2

L3

M4
PFLI
PFLIN
PFLS
PFR
PFRI
PFRST
RTCP
RTCW
RTI
TS2
TS3

PFAIL

0000028$X
000002~
000067"'
000061"
000043"
000047"'
000014
000066
000001~
000006"'
000000'
000000~
000064"'
000034
000065"
000065'X
000001$X
000003$X
0000048X

1/30
1/20
1/20
1/36
3/14
3/08
1/37
1/41
1/19
1/19
1/27
1/18
1/57
1/18
3/09
3/34
1/28
1/33
3/28

117

3/27
1/40
3/38
1/38
3/25
3/18
1/39
3/12

1/36

3/33
3/33
3/06
3/34

3/11
3/07
3/22

1/43
3/36

3/30

1/51

1/55

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

0001 svcC

118

s SUPERVISOR CALL

s

s TASK SCHEDULER MK, V

;E. WULFF 11-APR-71
;s MODIFIED 4~MAR-72

.TITL Svc

sTHIS SEGMENT OF CODE IS ENTERED FROM APPLICATION
sPROGRAMS WHEN THEY REQUIRE SUPERVISOR SERVICE.

sTHE MODULES OF THE SUPERVISOR ARE ARRANGED AS
s SEPERATE TASKS., AS SUCH THEY CAN ONLY BE ACTIVATED
3sBY THE TASK SCHEDULER.

CALLING SEQUENCE:
.SVC
(TCB ADDRESS OF SUPERVISOR MODULE) OR @(...)
(ERROR RETURN (IF REQUIRED))
(PARAMETERS REQUIRED (IF ANY))
; (NEXT STATEMENT)

we Ve we e

we

sTHE FOLLOWING CODE WILL STORE THE RETURN LOCATION

;OF THE CALLING PROGRAM, SO THAT IT IS RESTARTED

sAFTER SERVICE IS COMPLETE. ALSO THE ADDRESS OF THE
;TCB OF THE CALLING PROGRAM IS STORED IN AC3 OF THE

; CALLED SUPERVISOR MODULE. THIS ALLOWS THE SUPERVISOR
sMODULE FULL ACCESS TO THE STATUS OF THE CALLING PROGRAM.
;THE SUPERVISOR MODULE IS MADE ACTIVE BY USING THE

sTCB ADDRESS IN THE WORD AFTER THE CALL. IF "@" IS USED
sBEFORE THE TCB ADDRESS, THE SAME TCB IS MADE ACTIVE,
sBUT THE SUPERVISOR MODULE MAY TEST THE BIT AND USE

;IT AS A SWITCH.

.ENT .SVC, .EXIT
.EXTD TS,TS2,ATCB

.ZREL

00000-000000'SVC: RSVC

006000~

.SVC= JSR @svc sDEFINE CALLING MNEMONIC

«NREL

00000'060277 RSVC: INTDS

00001'056003$
00002'054000
00003'034003$%
00004'051401
00005'032000
00006'010000
00007'151100
00010'151220
00011'055000
00012'053017

00013'002002$%

STA 3,@ATCB ;SAVE CALLING ADDRESS

STA 3,0 ;ALSO IN LOC 0

LDA 3,ATCB ;GET CALLING TCB ADDRESS

STA 2,TAC2,3;SAVE AC2 IN CALLING TCB

LDA 2,@0 ;GET .SVC PARAMETER, NEW TCB
1SZ 0 ; INCREMENT RETURN

MOVL 2,2 ;CLEAR BIT 0

MOVZR 2,2

STA 3,TAC3,2;STORE OLD TCB IN AC3 OF NEW
STA 2,@TBP,2;ACTIVATE NEW TASK

JMP @Ts2 sENTER TASK SCHEDULER

0003 svC

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

11

9

sEXIT FROM SUPERVISOR

.
H

sWHEN SUPERVISOR SERVICE IS COMPLETE THE
sMODULE EXECUTES THIS CALL.

s CALLING SEQUENCE:

.
2

.
>

<EXT

T

(NEXT STATEMENT)

sTHIS CODE PUTS THE CALLING MODULE INTO THE
sWAIT STATE AND PASSES CONTROL TO THE TASK

s SCHEDULER. THE MODULE CAN ONLY BE RESTARTED
3BY A '.SVC' FOR THAT MODULE. THEN IT WILL

sBE STARTED AT THE LOCATION FOLLOWING THE LAST
s '.EXIT' THAT WAS EXECUTED.

s SUPERVISOR MODULES CANNOT BE CALLED

s RE-ENTRANTLY. THEY ARE TASKS AND THERE MAY

sBE SEVERAL MODULES WITH THE SAME RE-ENTRANT
sPROGRAM, BUT DIFFERENT TCB'S. ALL SUPERVISOR
sMODULES SHOULD BE OF HIGHER PRIORITY ON THE

3sTASK SCHEDULER THAN PROGRAMS MAKING CALLS ON IT.
sTHIS ENSURES THAT THEY ARE NOT CALLED RE-ENTRANTLY.

;DESTROYED:

«ZRE

L

31 00001-000014"EXIT:
006001-.EXIT=

32
33
34
35

«NREL

36 00014'060277 REXIT:
37 00015'054000
38 00016'034003$%
39 00017'175100
40 00020'175240
41 00021'057417
42 00022'002001%

43
44
0004

ATCB
EXIT
REXIT
RSVC
SvC
TS
TS2
«EXIT
.SVC

SVC

000003$X
000001~
000014"'
000000'
000000~
000001$X
000002$X
006001~
006000~

.END

1/49
3/31
3/31
1/43
1/43
3/42
1/59
3/32
1/44

REXI
JSR

AC

T

INTDS

STA
LDA
MOVL
MOVO
STA
JMP

R

1/51
3/32
3/36
1/48
1/44

3 ONLY
@EXIT sDEFINE CALLING MNEMONIC

0 ;STORE RETURN POINT
ATCB ;GET TCB OF CALL

H

]

,3

,3 ;SET BIT O

,@TBP, 3;DE-ACTIVATE TASK

TS ;ENTER TASK SCHEDULER

DWWwwww

3/38

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59

120

0001 WT
sWAIT ON CONDITION
H
5 XXX
sMK. V
;E. WULFF 8-APR-71
sTHE CONDITION IS SIGNALLED BY AN
sEVENT CONTROL WORD WHOSE ADDRESS IS IN THE
sWORD AFTER THIS CALL. RETURN TO THE STATEMENT
sAFTER THAT WHEN THE CONDITION IS POSTED. THIS MAY
sOCCUR STRAIGHT AWAY OR DE-ACTIVATE THE TASK
sUNTIL IT IS POSTED BY THE CONDITION.
sCALLING SEQUENCE:
H JWAIT OR JSR @WAIT
3 (ECW ADDRESS)
: SUBC 3,3 ;CLEAR THE
: STA 3,@.-2 ;EVENT CONTROL WORD
;CLEARING OF THE EVENT CONTROL WORD IS ESSENTIAL
3TO THE SUCCESSFUL OPERATION OF THIS METHOD OF TASK
;s SYNCHRONISATION. IT MAY ONLY BE DEFERRED UNTIL ANOTHER
sWAIT STATEMENT. MANY SUBROUTINES CONTAIN
sWAIT STATEMENTS AND THE CALLING SEQUENCE ABOVE
3IS A SAFE AND RECOMMENDED PROCEDURE.
sDESTROYED: AC3 ONLY
.TITL WT
« ENT WAIT, .WAIT
.EXTD ATCB,TS1,Cl
«ZREL
00000-000000'WAIT: Wl
006000-.WAIT= JSR @WAIT sDEFINE CALLING MNEMONIC
«NREL
00000'060277 W1: INTDS
00001'175400 INC 3,3
00002'056001$ STA 3,@ATCB ;STORE RETURN IN TCB
00003'037777 LDA 3,@-1,3 ;GET CONTENTS OF ECW
00004'175112 MOVL# 3,3,SZC ;IS EVENT ALREADY POSTED
00005'000414 JMP W2 sYES
00006'034001$ LDA 3,ATCB ;GET ACTIVE TCB POINTER
00007'051401 STA 2,TAC2,3;SAVE AC2 IN TCB
00010'031400 LDA 2,TAC3,3;GET SAVED RETURN IN AC2
00011'050000 STA 2,0 3SAVE RETURN IN LOCATION 0
00012'057377 STA 3,@-1,2 ;STORE TCB ADDRESS IN ECW
sBIT 0 IS CLEARED
00013'175100 MOVL 3,3
00014'175240 MOVOR 3,3 sSET BIT O, DONT DISTURB CARRY
00015'057417 STA 3,@TBP,3;USE BACKPOINTER TO STORE

121

0002 WT
01 ;TCB ADDRESS WITH BIT O SET IN TASK QUEUE.
02 ;THIS DE-ACTIVATES THE TASK FOR THE TASK SCHEDULER
03
04 00016'030003$ - LDA 2,Cl 3+l
05 00017'051416 STA 2,TWC,3 ;SET WAIT COUNT TO 1
06
07 00020'002002% JMP @rs1 sENTER MAIN TASK SCHEDULER
08
09 00021'036001%W2: LDA 3,@ATCB
10 00022'060177 INTEN
11 00023'001400 JMP 0,3 sRETURN TO WAITING TASK
12
13 sTHIS PROGRAM WILL ONLY WORK IN ASSOCIATION WITH OTHER
14 sPROGRAMS WHICH POST THE CONDITION AND CLEAR THE ECW.
15
16
17 .END
0003 WT
ATCB 000001$X 1/47 1/51 2/09
cl 000003%X 2/04
TS1 000002$X 2/07
Wl 000000" 1/40 1/45
w2 000021" 1/50 2/09
WAIT 000000~ 1/40 1/41

.WAIT 006000- 1/41

122

0001 MWT
01
02 sWAIT ON MULTIPLE CONDITIONS
03 H
04
05 ;3 XXX
06
07 sTASK SCHEDULER MK. V
08 ,
09 sE. WULFF 20~AUG~71
10
11 sTHE CONDITIONS ARE SIGNALLED BY ONE OR MORE
12 sEVENT CONTROL WORDS WHOSE ADDRESSES FOLLOW
13 sTHE CALL. THE LIST OF EVENT CONTROL WORDS
14 sIS TERMINATED BY A NEGATIVE NUMBER WHOSE TWO'S
15 ;COMPLEMENT INDICATES HOW MANY OF THE CONDITIONS
16 3SHOULD BE POSTED BEFORE CONTROL IS RETURNED
17 3TO THE TASK CONTAINING THE CALL. EVENT CONTROL
18 sWORDS SHOULD BE CLEARED AS SOON AS CONTROL
19 3IS RETURNED.
20
21 s CALLING SEQUENCE:
22 H «MWAIT OR JSR @MWAIT
23 H ECW1
24 H ECW2
25 H ceee
26 ; ECWN
27 H -M
28 H SUBC 3,3 sCLEAR ECW'S
29 H STA 3,Q@.-N-2
30 H STA 3,@,-N-2
31 H cees
32 H STA 3,@.-N-2
33 H NEXT STATEMENT
34
35 sTHIS CALL IS INTERPRETED AS:
36 sWAIT FOR "M" OUT OF THE "N" EVENTS LISTED
37
38 sDESTROYED: AC3 ONLY
39
40 s SUBROUTINES NEEDED:
41 ; SAVAC,RESAC
42
43 .TITL MWT
44
45 «ENT JMWAIT ,MWAIT
46 «EXTD ATCB,TS1,SAVAC,RESAC
47
48 «ZREL
49
50 00000~-000000'MWAIT: MWT
51 006000~ .MWAIT= JSR @MWAIT
52
53 .NREL
54
55 00000'060277 MWT: INTDS s INTERRUPT MUST BE OFF
56 00001'056001$ STA 3,@ATCB ;SAVE AC3
57 00002'006003$ JSR @SAVAC ;SAVE ACO,AC2 AND CARRY
58 00003'161000 MOV 3,0 sMOVE TGB ADDRESS TO AGO

59 00004'126460 CLA 1,1

123

0002 MWT
01 00005'044433 STA 1,PCNT ;ZERO POST COUNT
02 00006'036001$ LDA 3,@ATCB ;RETURN POINTER
03
04 sPICK UP THE ECW'S AND TEST FOR WAIT COUNT
05
06 00007'175400 NPAR: INC 3,3 s INCREMENT PARAMETER POINTER
07 00010'031777 LDA 2,-1,3 ;GET NEXT PARAMETER
08 00011'151112 IFM 2,2 3IS IT WAIT COUNT
09 00012'000410 JMP LPCNT ;YES
10 00013'025000 LDA 1,0,2 ;NO, GET ECW
11 00014'125112 IFM 1,1 ;IS EVENT ALREADY POSTED
12 00015'000403 JMP 43 3 YES
13 00016'041000 STA 0,0,2 ;NO, STORE TCB ADDR. IN ECW
14 00017'000770 JMP NPAR
15
16 00020'014420 DSZ PCNT s DECREMENT POST COUNT
17 00021'000766 JMP NPAR
18
19 sWAIT COUNT HAS BEEN FOUND
20
21 00022'054000 LPCNT: STA 3,0 s SAVE RETURN IN LOC O
22 00023'115000 MOV 0,3 ;sMOVE TCB ADDRESS TO AC3
23 00024'024414 LDA 1,PCNT ;GET POST COUNT
24 00025'146400 SUB 2,1 sWAIT FOR THIS NO. OF EVENTS
25 00026'124537 IFZM 1,1 sTEST IF ALREADY ENOUGH
26 00027'002004$ JMP @RESAC ;YES, RESTART
27 00030'045416 STA 1,TWC,3 ;NO, STORE WAIT COUNT
28 00031'177240 ADDOR 3,3 3SET BIT O
29 00032'057417 STA 3,@TBP, 3;DE-ACTIVATE TASK VIA BACK P.
30 00033'021404 LDA 0,TPCC,3
31 00034'101120 MOVZL 0,0 sRESTORE CARRY
32 00035'021403 LDA 0,TACO0,3
33 00036'025402 LDA 1,TAC1,3;RESTORE ACO AND ACl
34 00037'0020023 JMP @Ts1 sENTER TASK SCHEDULER.
35
36 00040'000000 PCNT: O
37
38 .END
0003 MWT
ATCB 0000018X 1/56 2/02
LPCNT 000022' 2/09 2/21
MWAIT 000000~ 1/50 1/51
MWT 000000' 1/50 1/55
NPAR 000007 2/06 2/14 2/17
PCNT 000040' 2/01 2/16 2/23 2/36

RESAC 000004$X 2/26
SAVAC 000003$X 1/57
TS1 0000028X 2/34
MWAI 006000- 1/51

[

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

0001 SAC

124

$SAVE AND RESTORE STATUS

s

3 XX

sTASK SCHEDULER MK. V

;E. WULFF

11-APR-71

;TWO ROUTINES THAT CAN BE USED BY SUPERVISOR
;MODULES TO FREE THE HARDWARE STATUS TEMPORARILY.
; INTERRUPT MUST BE OFF WHEN SAVAC AND RESAC

$ARE CALLED.
;SAVE AND RESTORE ACO,AC1,AC2 AND CARRY
;IN THE CURRENTLY ACTIVE TASK CONTROL

;BLOCK.

s CALLING SEQUENCE:
JSR @SAVAC

.
>

.
b

(NEXT

STATEMENT)

sAC3 MUST BE SAVED INDEPENDENTLY.

.TITL

.ENT
« EXTD

«ZREL
00000-000000" SAVAC:
-NREL

00000'054003$RSAVA:
00001'034001$%
00002'051401
00003'045402
00004'041403
00005'102660

00006 '041404

00007 '002003$%

' SAC

SAVAC,RESAC
ATCB, TS4,SAVR

RSAVA

STA
LDA
STA
STA
STA
SUBCR
STA
JMP

3,SAVR ;SAVE RETURN

3,ATCB ;GET ACTIVE TCB ADDRESS
2,TAC2,3

1,TAC1,3

0,TACO,3;SAVE ACO TO AC2

0,0

0,TPCC,3;SAVE CARRY

@SAVR

125

3sTHIS CALL RESTORES ACO TO AC3 AND CARRY

sACTIVE TCB POINTER

sRESTORE CARRY

sRESTORE ACO TO AC3

0002 SAC
01
02 sRESTORE STATUS AND RETURN.
03
04 3CALLING SEQUENCE:
05 3 JMP @RESAC
06
07
08 3FROM THE ACTIVE TASK CONTROL BLOCK.
09 sIT THEN TURNS ON INTERRUPT AND RETURNS
10 sCONTROL TO THE ADDRESS IN LOC O.
11
12 .ZREL
13
14 00001-000010"RESAC: RRAC
15
16 .NREL
17
18 00010'034001$RRAC: LDA 3,ATCB
19 00011'021404 LDA 0,TPCC, 3
20 00012'101120 MOVZL 0,0
21 00013'021403 LDA 0,TACO,3
22 00014'025402 LDA 1,TAC1,3
23 00015'002002% JMP @TS4
24
25 .END
0003 SAC
ATCB 0000018X 1/36 2/18
RESAC 000001~ 2/14
RRAC 000010' 2/14 2/18
RSAVA 000000' 1/31 1/35
SAVAC 000000~ 1/31

SAVR 000003$X 1/35 1/42
TS4 000002%X 2/23

126

0001 POST
01
02 ;s POST AN EVENT
03 H
04
05 3 XXX
06
07 3 TASK SCHEDULER MK. V
08
09 ;s E. WULFF 11-APR-71
10
11 s THE EVENT IS POSTED TO ANOTHER TASK VIA AN EVENT
12 ; CONTROL WORD (ECW). IF THE OTHER TASK IS WAITING
13 ;s ON THIS EVENT, THE TASK IS ACTIVATED AND THE TASK
14 s SCHEDULER IS ENTERED. IF THE WAITING TASK IS OF
15 ; HIGHER PRIORITY THAN THE TASK CONTAINING THE CALL,
16 s THE WAITING TASK WILL BE EXECUTED NEXT. OTHERWISE,
17 ; OR IF THE OTHER TASK IS NOT WAITING, THE STATEMENT
18 ;3 AFTER THE CALL IS EXECUTED NEXT. IN ALL CASES THE
19 3 COMPLETION BIT IN THE EVENT CONTROL WORD IS SET.
20 ;3 MULTIPLE POSTINGS ON THE SAME ECW ARE ALLOWED.
21 s ALL BUT THE LAST POSTING ARE IGNORED.
22
23
24 3 CALLING SEQUENCE:
25 5 .POST OR JSR @POST
26 H (ECW ADDRESS) OR @(POINTER TO ECW ADDRESS)
27 3 (NEXT STATEMENT)
28
29 ;s DESTROYED: AC3 ONLY
30
31 ;3 OTHER ROUTINES REQUIRED: POSTI
32
33 H NOTE
34 ;s THE ROUTINE "POSTI" MUST ALWAYS BE LOADED
35 s IMMEDIATELY AFTER THIS ONE, BECAUSE THIS ROUTINE
36 3 EXPECTS TO ENTER IT AFTER THE LAST STATEMENT.
37
38 .TITL POST
39
40 . ENT .POST,POST
41 .EXTD POSTI
42
43 .ZREL
44
45 00000-000000'POST: RPOST
46 006000-.POST= JSR @POST ;s DEFINE CALLING MNEMONIC
47
48 .NREL
49
50 00000'060277 RPOST: INTDS ;3 DISENABLE INTERRUPTS
51 00001'054000 STA 3,0 s SET UP RETURN
52 00002'010000 1SZ 0 ; TO MISS PARAMETER

53
54
55
56

POST 000000~

.
-

POSTI 000001$X

RPOST 000000"
.POST 006000~

AT THIS POINT ENTER "POSTI"

.END
1/45 1/46
1/45 1/50
1/46

[

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58

0001 POSTI

127

POST AN EVENT IN AN INTERRUPT SERVICE ROUTINE

5 XX

;3 TASK SCHEDULER MK. V

; E. WULFF

11-APR-71

;s ROUTINE FOR POSTING AN EVENT IN AN INTERRUPT
3 SERVICE ROUTINE TO A TASK.

Ve Ve Ve Ve Ve

ve

ve we

we

ve

NOTE: INTERRUPT MUST BE DISENABLED.

ALL REGISTERS EXCEPT AC3 MUST BE RESTORED
TO THE VALUE THEY HAD WHEN THE INTERRUPT
OCCURRED, BEFORE THIS CALL IS MADE.

THIS ROUTINE DOES NOT RETURN TO THE CALLER.

CALLING SEQUENCE:

JSR @POSTI
(ECW ADDRESS) OR @ (POINTER TO ECW ADDRESS)

; DESTROYED:

.TITL

« ENT
« EXTD

«ZREL

00000-000000"POSTI:

.NREL

00000'050004$RPOSI:

00001'033400
00002'151134
00003'015016
00004 '000406

00005'053017
00006'030003$
00007'053400
00010'030004$%
00011'002001$%

00012'030003$POSI:
00013'053400
00014'030004$
00015'002002$

. END

POSTI
POSTI

TS,RTI, COMP,SAV2
RPOSI

STA 2,SAV2
LDA 2,@0,3
MOVZL# 2,2,SZR
DSZ TWC, 2
JMP POSI

STA 2,@TBP,2
LDA 2,COMP
STA 2,@0,3
LDA 2,SAV2
JMP QTS

LDA 2,COMP
STA 2,@0,3
LDA 2,SAV2
JMP @RTI

THE BODY OF THIS ROUTINE IS ALSO USED BY "POST"

SEE "POST" FOR DESCRIPTION OF POSTING OPERATION.

AC3 ONLY AND THIS IS RESTORED
s FROM THE TASK CONTROL BLOCK.

ve Ve we we Ve

we Ve

SAVE AC2
CONTENTS OF ECW

TEST ECW

TEST WAIT COUNT

STORE TCB ADDRESS IN

TASK QUEUE VIA BACK POINTER
SET COMPLETE FLAG IN ECW
RESTORE AC2

ENTER TASK SCHEDULER

SET COMPLETE FLAG IN ECW
RESTORE AC2

0002 POSTI
COMP 000003$X
POSI 000012'
POSTI 000000~
RPOSI 000000'
RTI 0000028X
SAV2 000004$X

TS

000001 $X

1/49
1/46
1/38
1/38
1/57
1/42
1/52

128

1/54
1/54

1/42

1/51

1/56

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

01

0001 SEM

ve we

we

b

129

SEMAPHORE OPERATIONS "LOWER" AND "RAISE"

XXX

s E. WULFF 6-APR-71

.TITL. SEM

.ENT LOWER,RAISE
.EXTD RTI,TS1,ATCB,SAV2,

Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve U

ve Ve we we we Ve we

Ve Ve we Ve

Ve Ve Ve Ve

Ve Ve Ve Ve Ve Ve

we

SEMAPHORES MUST BE DEFINED AS A 2 WORD BLOCK.

THE FIRST WORD IS THE ACTUAL SEMAPHORE COUNTER.

THE SECOND WORD IS USED TO LINK TO TASK CONTROL
BLOCKS WHEN TASKS ARE WAITING FOR A SEMAPHORE.

CARE MUST BE TAKEN TO INITIALISE A SEMAPHORE
CORRECTLY. THE FIRST WORD SHOULD CONTAIN THE

NUMBER OF LOWER OPERATIONS WHICH ARE TO BE ALLOWED
BEFORE THE SEMAPHORE SUSPENDS A TASK. THIS

VALUE IS USUALLY 1 FOR A BINARY SEMAPHORE WHICH IS
OPEN. THE VALUE IS O IF THE SEMAPHORE IS TO BE
BLOCKING. THE VALUE SHOULD NEVER BE INITTIALISED AS A
NEGATIVE VALUE. THE SECOND WORD OF THE SEMAPHORE
SHOULD ALWAYS BE INITTIALISED TO O.

APART FROM INITIALISATION A SEMAPHORE SHOULD ONLY

BE OPERATED ON BY THE "LOWER" AND "RAISE' OPERATIONS.

REFERENCES :
DIJKSTRA, E. W. COOPERATING SEQUENTIAL PROCESSES.
TECHNICAL U. EINDHOVEN, NETHERLANDS, 1966.

WIRTH, N. ON MULTIPROGRAMMING, MACHINE CODING,
AND COMPUTER ORGANIZATION.
COMM. ACM 12, 9 (SEPT. 69), 489-498.

B T T
* *

* LOWER *
* *

hkhhhhiiihiiiik

CALLING SEQUENCE:
LOWER
(ADDRESS OF SEM) OR @(POINTER TO ADDRESS OF SEM)
(NEXT STATEMENT)

OPERATION:
THE SEMAPHORE IS DECREMENTED. IF THE RESULT
IS POSITIVE OR ZERO THE NEXT STATEMENT IS
EXECUTED IMMEDIATELY. OTHERWISE THE PRESENT TASK
(PROCESS) IS SUSPENDED UNTIL A "RAISE" ON THE
SAME SEMAPHORE RE-ACTIVATES THE TASK.

DESTROYED: AC3 ONLY

THE "LOWER" OPERATION CORRESPONDS TO THE "P'" OPERATION
DESCRIBED BY E. W. DIJKSTRA.

130

0003 SEM
01

02 ; LOWER A SEMAPHORE

03

04 «ZREL

05

06 00000-000000'P: RP

07 006000-LOWER= JSR @ 3 DEFINE CALLING MNEMONIC
08

09 .NREL

10

11 00000'060277 RP: INTDS s PREVENT INTERRUPTS

12 00001'054000 STA 3,0 ; SAVE RETURN

13

14 00002'017400 DSZ @0,3 ; DECREMENT THE SEM. COUNTER
15 00003'000401 JMP 1 ;s COULD BE 0

16 00004'037400 LDA 3,@0,3 ; GET COUNTER VALUE

17 00005'175112 IFM 3,3

18 00006'000403 JMP PO 3 NEGATIVE

19

20 00007'010000 1SZ 0 s ZERO OR POSITIVE

21 00010'002001$ JMP @RTI s RETURN IMMEDIATELY

22

23 00011'034003$P0: LDA 3,ATCB ; ACTIVE TCB ADDRESS

24 00012'051401 STA 2,TAC2,3; SAVE AC2

25 00013'034000 LDA 3,0 s GET CALLING ADDRESS

26 00014'010000 1Sz 0 s INCREMENT RETURN

27 00015'035400 LDA 3,0,3 ; GET SEMAPHORE ADDRESS
28 00016'175112 IFM 3,3 ; IS IT ONLY POINTER

29 00017'000776 JMP =2 ; YES- TRY AGAIN

30

31 00020'031401 LDA 2,1,3 ; SEMAPHORE LINK WORD

32 00021'151015 IFZ 2,2 ; IS IT ZERO

33 00022'000415 JMP P3 ; YES

34

35 00023'155000 P1: MOV 2,3 ; NO- A TCB ADDRESS

36 00024'031416 LDA 2,TWC,3 ; NEXT LINK

37 00025'151014 IFN 2,2 s IS IT ZERO

38 00026'000775 JMP P1 ; NO

39

40 00027'030003$ LDA 2,ATCB ; YES- STORE ATCB

41 00030'051416 STA 2,TWC,3 ; AS NEW LINK

42

43 00031'155100 P2: MOVL 2,3 ; DO NOT DISTURB CARRY

44 00032'175240 MOVOR 3,3 ;3 SET BIT O

45 00033'057417 STA 3,@TBP,3; IN TASK QUEUE ENTRY
46

47 00034'152460 SUBC 2,2

48 00035'051416 STA 2,TWC,3 3 CLEAR LAST LINK WORD

49 00036'0020025 JMP @rsi s ENTER TASK SCHEDULER

50

51 s THE FACT THAT BIT O IN AC3 IS SET IS OF NO CONSEQUENCE
52 s TO THE TASK SCHEDULER, BECAUSE IT REPRESENTS THE
53 ; TCB ADDRESS OF A TASK WHICH HAS JUST BEEN SUSPENDED
54

55 00037'030003$P3: LDA 2,ATCB ; STORE ATCB

56 00040'051401 STA 2,1,3 ; IN SEMAPHORE LINK WORD

57 00041'000770 JMP P2

0004 SEM

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

00001-000042'V:
006001-RAISE=

00042'060277 RV:

00043'054000

00044'013400
00045'000401
00046'037400
00047'174537
00050'000403

00051'010000
00052'002001$%

00053'034003$V1:

00054'051401
00055'034000
00056'010000
00057'035400
00060'175112
00061'000776

00062'175400
00063'054004$

Ve we Ve we Ve

131

kkhkhhhkhhkkihk

*

*

* RAISE *

*

*

B S

; CALLING SEQUENCE:

H RAISE

H (ADDRESS OF SEM) OR @(POINTER TO ADDRESS OF SEM)
5 (NEXT STATEMENT)

; OPERATION:

We Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve

s DESTROYED:

THE SEMAPHORE COUNTER IS INCREMENTED.
VALUE IS POSITIVE (NOT ZERO), THE NEXT STATEMENT
IS EXECUTED IMMEDIATELY. OTHERWISE A TASK

LINKED TO THE 2ND WORD OF THE SEMAPHORE IS
RE-ACTIVATED. IF THIS TASK IS OF LOWER PRIORITY
THAN THE TASK MAKING THE CALL THE NEXT STATEMENT
IS ALSO EXECUTED IMMEDIATELY. THE ACTIVATED TASK
IS EXECUTED IN DUE COURSE. BUT IF THE TASK IS OF
OF HIGHER PRIORITY THAN THE TASK MAKING THE CALL
THIS TASK IS EXECUTED NEXT AND THE CALLING TASK
HAS TO WAIT. '

AC3 ONLY

IF THE

3 THE "RAISE" OPERATION CORRESPONDS TO THE "V" OPERATION
;s DESCRIBED BY E. W. DIJKSTRA.

«ZREL

RV
JSR

«NREL

INTDS
STA

ISz

LDA
IFZM

ISZ
JMP

LDA
STA
LDA
ISz
LDA
IFM

INC
STA

Qv 3

3,0 3

@0,3 3

.+l H
3,@0,3
3,3

\'21 H
0 5
@RTI ;
3,ATCB ;
2,TAC2,3;
3,0 3
0

3,0,3 ;
3,3 H
=2 H
3,3 :

DEFINE CALLING MNEMONIC

DISABLE INTERRUPTS
SAVE RETURN

INCREMENT SEMAPHORE COUNTER
COULD BE ZERO
GET COUNTER VALUE

ZERO OR MINUS

s POSITIVE
3 RETURN IMMEDIATELY

s ACTIVE TCB ADDRESS

SAVE AC2

s ADRESS OF CALL

s GET SEMAPHORE ADDRESS
s IS IT ONLY POINTER

YES

; POINT TO LINK WORD

132

0005 SEM
01 00064'031400 LDA 2,0,3 ; TCB ADDRESS IN LINK WORD
02 00065'035016 LDA 3,TWC,2 3 NEXT LINK
03 00066'056004$ STA 3,@AV2 ; STORE IN SEM LINK WORD
04 00067'053017 STA 2,@TBP,2; ACTIVATE TASK
05 00070'034003$ LDA 3,ATCB
06 00071'002002$ JMP @Ts1 ; ENTER TASK SCHEDULER
07
08 .END

0006 SEM

ATCB 000003$X 3/23 3/40 3/55 4/50 5/0 &
LOWER 006000- 3/07
P 000000- 3/06 3/07
PO 000011" 3/18 3/23
Pl 000023"' 3/35 3/38
P2 000031" 3/43 3/57
P3 000037"' 3/33 3/55
RAISE 006001~ 4/34
RP 000000"' 3/06 3/11
RTI 000001$x 3/21 4/48
RV 000042" 4/33 4/38
SAV2 000004$X 4/59 5/03
TS1 000002$X 3/49 5/06
v 000001~ 4/33 4/34

V1 000053" 4/45 4/50

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

0001 DQINI

.
b

ve

we

Ve Ve we Ve we Ve Ve we

we

Ve Ve Ve we Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve

133

;s DOUBLE ENDED QUEUE HANDLERS

H

; E. WULFF 2-APR-71
MODIFIED 14-MAR-72

MODIFIED FROM B. WILLIAMS D.Q. HANDLERS
VERSION 4

THESE ROUTINES HANDLE D.Q.'S AND WILL ALLOCATE
CORE BETWEEN A NUMBER OF TASKS OR PROGRAMS.
THEY ARE MOST USEFUL IN IMPLEMENTING DYNAMIC
BUFFERS BETWEEN PROGRAMS AND I/O ROUTINES.

ALGORITHM:
EACH DOUBLE ENDED QUEUE CONSISTS OF A CONTROL
BLOCK (DQCB) AND A VARIABLE NUMBER OF CELLS.
THE NUMBER OF CELLS MAY BE ZERO. EACH CELL
CONSISTS OF 2 LINK WORDS AND A NUMBER OF
WORDS OF STORAGE FOR THE USER. THE SIZE
OF ALL CELLS IN ONE QUEUE SHOULD BE THE SAME.
THE ADDRESS OF A CELL IS THE ADDRESS OF THE
FIRST WORD OF FREE STORAGE. THE 2 LINK
WORDS PRECEDE THIS ADDRESS WITH DISPLACEMENTS
OF -2 AND -1 WITH RESPECT TO THE ADDRESS
OF THE CELL. THEY SHOULD NEVER BE INTERFERED
WITH BY THE USER.

THE FIRST TWO WORDS OF THE CONTROL BLOCK AND
THE TWO LINK WORDS OF EACH CELL IN THE QUEUE
TOGETHER FORM A CIRCULAR LINKED LIST. THE
FIRST WORD "L" POINTS TO THE CELL ON THE LEFT.
THE SECOND WORD "R" POINTS TO THE CELL ON THE
RIGHT. THE LINK WORDS IN THE CONTROL BLOCK
CLOSE THE CIRCLE. SINCE THE ADDRESS OF THE
CONTROL BLOCK IS KNOWN, ROUTINES USING THE
CONTROL BLOCK ADDRESS AS A PARAMETER CAN
MANIPULATE CELLS IMMEDIATELY TO THE LEFT

AND RIGHT OF THE CONTROL BLOCK.

"LGET" AND "RGET" WILL OBTAIN THE ADDRESS

OF THE APPROPRIATE CELL AND RETURN IT IN AC2.
THE QUEUE IS RE~LINKED TO EXCLUDE THE CELL
WHICH HAS BEEN TAKEN OUT. A SEMAPHORE IN THE
CONTROL BLOCK COUNTS THE NUMBER OF AVAILABLE CELLS
IN THE QUEUE AND IF AN ATTEMPT IS MADE TO

GET A CELL WHEN THE QUEUE IS EMPTY, THE TASK
MAKING THE CALL IS SUSPENDED. A SECOND
SEMAPHORE COUNTS THE NUMBER OF EMPTY CELLS IN
THE QUEUE. IF THE VALUE OF THIS SEMAPHORE
REACHES 0, THE QUEUE IS FULL, AND AN ATTEMPT
TO PUT MORE CELLS WILL ALSO SUSPEND THE TASK
MAKING THE CALL. THE MAX. NUMBER OF CELLS
ALLOWED ON A QUEUE IS SPECIFIED IN THE
INITIALISATION OF THE D.Q.

134

0002 DQINI

01

02 : "LGET" AND "RGET" WILL ALSO STORE THE VALUE

03 3 RETURNED IN AC2 LESS 1 IN LOCATION 20. THUS

04 3 LOCATION 20 CAN BE USED AS AN AUTO-INCREMENTING
05 3 POINTER TO THE WORDS IN THE CELL.

06 3 THE WORD LENGTH OF THE CELL IS RETURNED BY BOTH
07 H ROUTINES IN LOCATION 30, THE OPERATION DSZ 30
08 H CAN THUS BE USED AS A LOOP COUNT WHEN

09 H ACCESSING WORDS IN THE CELL.

10

11 3 "LPUT" AND "RPUT" INSERT CELLS INTO THE QUEUE.
12 3 THE ADDRESS OF THE CELL IS PASSED TO THE

13 3 ROUTINE IN AC2. IF THE SEMAPHORE IN THE CONTROL
14 3 BLOCK HAD PREVIOUSLY SUSPENDED A TASK BECAUSE
15 3 OF A LACK OF CELLS IN THIS QUEUE, THEN "LPUT"
16 3 OR "RPUT" WILL CAUSE RE-ACTIVATION OF ONE TASK
17 ; WAITING FOR A CELL IN THIS QUEUE.

18

19 3 DOUBLE ENDED QUEUES ARE INITIALISED WITH

20 : ROUTINE "DQINI". THE CONTROL BLOCK ADDRESS,

21 3 CELL LENGTH,NUMBER OF CELLS AND THE ADDRESS

22 3 OF THE FIRST CELL MUST BE SPECIFIED.

23

24 s NOTE: THE NUMBER OF CELLS SPECIFIED IS ALSO THE MAX.
25 3 NO. OF CELLS ALLOWED OM THE D.Q. IF A VALID ADDRESS
26 3 IS GIVEN FOR THE FIRST CELL, THE SPACE IN

27 3 CORE WILL BE LINKED INTO A CHAIN OF CELLS.

28 3 IF THE ADDRESS GIVEN IS 0, A ZERO LENGTH D.Q.
29 H ONLY WILL BE INITIALISED. THE NUMBER OF CELLS
30 s PARAMETER WILL STILL GIVE THE MAX. NO. OF CELLS
31 3 ALLOWED ON THE D.Q. LATER.

32 ; NOTE: CELL LENGTH MUST BE SPECIFIED IN BYTES FOR

33 H INITIALISATION. IT WILL BE RETURNED IN WORDS

34 3 IN THE LAST WORD OF THE D.Q. CONTROL BLOCK.

35

36 3 "DQINI" WILL SET UP THE 7 WORD CONTROL BLOCK.
37 ; NOTE: 2 OF THESE PRECEDE THE ADDRESS OF THE

38 3 CONTROL BLOCK.

39 3 LET "N" BE THE NUMBER OF CELLS SPECIFIED,

40 3 '""s" THE ADDRESS OF THE FIRST CELL SPECIFIED

41 3 AND "L" THE LENGTH OF THE CELL SPECIFIED IN

42 3 A CALL ON "DQINI", THEN THE AREA OF CORE WHICH
43 3 IS SET UP EXTENDS FROM (S) TO (S+N*((1L+5)/2)-1).
44
45 ; NOTE: EVEN IF A D.Q. IS OF ZERO LENGTH, IT SHOULD

46 3 BE INITIALISED WITH THE "DQINI" CALL, SO THAT
47 3 THE D.Q. IS RE-INITIALISED WHEN THE SYSTEM

48 3 IS RESTARTED.

49

50 3 THE FORMAT OF THE ZERO LENGTH D.Q. CONTROL BLOCK
51 5 AFTER INITIALISATION IS:

52

53 3 (DQCB ADDRESS) ; LEFT LINK

54 3 (DQCB ADDRESS) 3 RIGHT LINK

55 ; (DQCB ADDRESS): 0 s SEMAPHORE 1 COUNTER
56 3 0 s SEMAPHORE 1 LINK

57 H (MAX. NO. CELLS)j; SEMAPHORE 2 COUNTER
58 : 0 ;s SEMAPHORE 2 LINK

59 3 (CELL LENGTH/2) ; CELL LENGTH

0004 DQINI

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

177776
177777
000000
000002

000004

00000-000000"

; ROUTINE 1

135

s D.Q. INITIALISATION ROUTINE

s CALLING SEQUENCE:

s
b4
.
2
Ed
>
2

.DQINI

(DQCB ADDRESS) OR @(POINTER TO ...)

(CELL
(NUMBE
(ADDRE
(NEXT

; DESTROYED:

.TITL

.ENT
«EXTN

DQINI

.DQINI
.LPUT

BYTE LENGTH) OR @(POINTER TO ...)

R OF CELLS) OR @(POINTER TO ...)

SS OF FIRST CELL) OR @(POINTER TO ...)
STATEMENT)

ALL ACC'S,CARRY,L6,L20,L21 AND L30

,DQINI,L,R,C

3 CONTROL BLOCK FORMAT

L=
R=
Si=

;3 Sl+l=
S2=

3 S2+1=
C=

«ZREL

DQINI:

006000~.DQINI=

00000'054021
00001'035400
00002'175112
00003'000776

00004 '054030
00005'055776
00006'0557/7
00007'032021
00010'102461
00011'031000
00012'151112
00013'000776

00014'041400
00015'04140
00016'041403

00017'141620
00020'041404

.NREL
; FIRST

DQINT:

-2
-1

0
1
2
3
A

DQINT
JSR

CREATE

STA
LDA
IFM
JMP

STA
STA
STA
LDA
SUBC
LDA
IFM
JMP

STA
STA
STA

INCZR
STA

LEFT LINK

RIGHT LINK
SEMAPHORE 1 COUNT
SEMAPHORE 1 LINK
SEMAPHORE 2 COUNT
SEMAPHORE 2 LINK
CELL LENGTH

Ve Ve Ve Ve Ve Ve e

@DQINI

A ZERO LENGTH D.Q.

3,21 ; SAVE RETURN
3,0,3 ; DQCB ADDRESS

3,3
-2 ; POINTER. TRY AGAIN
3,30 ; STORE FOR LPUT CALL
3,L,3 ; INITIALISE LEFT END
3,R,3 ; INITIALISE RIGHT END
2,@21 ; BYTE LENGTH
0,0,SKP
2,0,2 ; EMULATE INDIRECT
2,2

-2 ; POINTER. TRY AGAIN

0,S1,3 ; CLEAR AVAILABLE CELLS
0,S1+1,3; SEMAPHORE
0,S2+1,3: CLEAR EMPTY CELLS
; SEMAPHORE. (LINK ONLY)
2,0 ; CONVERT BYTE LENGTH TO WORD LENGTH

0,C,3 3 STORE IN CONTROL BLOCK

0006 DQINI

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

c2

00021'032021

00022'0004@
00023'031000
00024'151112

00025'0007 76

00026'051402
00027'144400

00030'032021
00031'000402
00032'031000
00033'151112
00034'000776

00035'151015
00036'002021

00037'034411
00040'173000
00041'163000

00042'177777
00043'100030
00044'113000
00045'125404
00046'000774

00047'0@021

00050'0®002

0007 DQINI

000004
000050

DQIl 000042
DQINI 000000~
DQINT 000000'

S1
S2

177776
177777
000000
000002

.DQIN 006000~

«LPUT

000042'X

136

s SET UP THE OTHER PARAMETERS

DQI1:

C2:

«END

4/29
6/22
6/26
4/33
4/33

412
4/24
4/25
4/27
4/34
6/26

LDA
JMP
LDA
IFM
JMP

STA
NEG

LDA
JMP
LDA
IFM
JMP

IFZ
JMP

LDA
ADD
ADD

. LPU
@30
ADD
INC
JMP

JMP

3

T

4/59
6/34
6/30
4/34
4/40

4/4
4/47
4/54
4/56

2,@21
o2
2,0,2
2,2
=2

2,@21 3

w
-

o
we

3>
H
0,2 H
1,1,SZR ;
DQI1 ;

@21 3

6

4/55
6/10

NUMBER OF CELLS

NO OF EMPTY CELLS

ADDRESS OF FIRST CELL

; RETURN FOR 0 LENGTH D.Q.

ADJUST TO ALLOW FOR LINK WORDS

; PUT ON D.Q.
;3 SPECIFIED IN THE CALL

COMPUTE NEXT CELL ADDRESS
ANY MORE CELLS

s YES

RETURN

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0001 LPUT

137

s DOUBLE ENDED QUEUE HANDLERS

’

; E. WULFF 2-APR-71
; MODIFIED 14-MAR-72
; ROUTINE 2

s PUT A CELL ON THE LEFT OF THE D.Q.

; INPUT:

.
b

ADDRESS OF THE NEW CELL IS PASSED IN AC2

3 CALLING SEQUENCE:

; .LPUT
; (DQCB ADDRESS) OR @(POINTER TO DQCB ADDRESS)
; (NEXT STATEMENT)

SEQUENCING:

IF THE NO. OF CELLS ALLOWED FOR THE D.Q. IS
EXCEEDED, THE TASK MAKING THE CALL IS SUSPENDED
UNTIL A CELL IS TAKEN AWAY BY ANOTHER TASK.

we we e Ve

; DESTROYED: AC3,L6 AND L20 (ALSO SAV2)
; UNCHANGED: AC0,AC1,AC2,CARRY,L7,L21 AND L30

0002 LPUT

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

.TITL
«ENT

«EXTD
« EXTN

«ZREL

00000-000000"'LPUT:

006000~

. LPUT=

.NREL

00000'054020 L.PUT:

00001'035400
00002'175112
00003'000776
00004 '054006
00005'010006
00006'010006

00007'177777
00010'100006

00011'014006
00012'014006
00013'034006

00014'060277

00015'044003$
00016'025401$
00017'051401$%
00020'135000

00021'025402%
00022'045002%
00023'055001$%

00024'051402$

00025'024003$
00026'060177

00027'177777
00030'100006

00031'002020

46 .

47

LOWER
LPUT
L.PUT

RAISE
.SAV2
. LPUT

0003 LPUT

0000018X
000007 'X
000000~
000000"'
0000028X
000027'X
000003$X
006000~

«END

2/32
2/23
2/10
2/10
2/35
2/42
2/31
2/11

138

LPUT

.LPUT,LPUT
L,R,SAV2
LOWER , RAISE

L.PUT

JSR @LPUT

STA
LDA
IFM

www
v v v
AN WON

STA
ISZ
ISZ

NN

LOWER
@6

DSZ 6
DSZ 6
LDA

INTDS
STA 1
LDA 1
STA 2
MoV 1
LDA 1
STA 1
STA 3
STA
LDA
INTEN

RAISE.
@6

JMP @20

2/33
2/11
2/15
2/36

2/39

2/37

2/38

Ve Ve We Ve

Ve we we Ve

DEFINE CALLING MNEMONIC

SAVE RETURN
DQCB ADDRESS
TEST IF POINTER
YES - TRY AGAIN

POINT TO 2ND SEMAPHORE

NO. OF EMPTY CELLS

;3 POINT TO 1ST SEMAPHORE
RESTORE AC3

SECURE DURING RE-LINKING
SAVE AC1 IN TEMP. REG.
GET OLD LEFT END

MAKE NEW CELL LEFT END

s MOVE RIGHT LINK

.
s

>

Ve Ve we Ve

TO NEW CELL
LINK OLD TO NEW
s LINK NEW TO OLD
RESTORE ACl

5 RELEASE

NO. OF AVAILABLE CELLS
ACTIVATE A TASK

IF WAITING FOR A CELL
RETURN SKIPPING PARAMETER

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0001 RPUT

ve we we

Ve e e we

b

139

DOUBLE ENDED QUEUE HANDLERS

E. WULFF 2-APR-71
MODIFIED 14-MAR~72
ROUTINE 3

PUT A CELL ON THE RIGHT OF THE D.Q.

; INPUT:
ADDRESS OF THE NEW CELL IS PASSED IN AC2

; CALLING SEQUENCE:
.RPUT
(DQCB ADDRESS) OR @(POINTER TO DQCB ADDRESS)
(NEXT STATEMENT)

SEQUENCING:
IF THE NO. OF CELLS ALLOWED FOR THE D.Q. IS
EXCEEDED, THE TASK MAKING THE CALL IS SUSPENDED
UNTIL A CELL IS TAKEN AWAY BY ANOTHER TASK.

; DESTROYED: AC3,1L6 AND L20 (ALSO SAV2)
UNCHANGED: AC0,AC1,AC2,CARRY,L7,121 AND L30

0002 RPUT

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

.TITL

« ENT
«EXTD
«EXTN

«ZREL

00000-000000'RPUT:
006000~ .RPUT=

«NREL

00000'054020 R.PUT:
00001'035400
00002'175112
00003'000776
00004'054006
00005'010006
00006'010006

00007'177777
00010'100006

00011'014006
00012'014006
00013'034006

00014'060277
00015'044003%
00016'025402%
00017'051402%
00020'135000
00021'025401$
00022'045001%
00023'055002%
00024'051401$%
00025'024003$
00026'060177

00027'177777
00030'100006

00031'002020

.END

0003 RPUT

000001$X 2/35

LOWER 000007'X 2/23

R 000002$X 2/32
RAISE 000027'X 2/42
RPUT 000000- 2/10
R.PUT 000000’ 2/10

SAV2 000003$X 2/31
.RPUT 006000~ 2/11

14

RPUT

.RPUT,RP
L,R,SAV2

0

uT

LOWER, RAISE

R.PUT
JSR

STA
LDA
IFM
JMP
STA
ISZ
ISZ

LOWER
@6

DSZ
DSZ
LDA

INTDS
STA
LDA
STA
MoV
LDA
STA
STA
STA
LDA
INTEN

RAISE
@6

JMP

2/36
2/33
2/11

2/15
2/39

@RPUT

@20

2/38

2/37

b

]

Ve we Ve ue

Ve we We Ve e W

we we we we

s DEFINE CALLING MNEMONIC

SAVE RETURN
DQCB ADDRESS
TEST IF POINTER

s YES - TRY AGAIN

POINT TO 2ND SEMAPHORE

NO. OF EMPTY CELLS

POINT TO 1ST SEMAPHORE
RESTORE AC3

SECURE DURING RE-LINKING
SAVE AC1 IN TEMP. REG.
GET OLD RIGHT END

MAKE NEW CELL RIGHT END

MOVE LEFT LINK
TO NEW CELL
LINK OLD TO NEW
LINK NEW TO OLD
RESTORE AC1
RELEASE

NO. OF AVAILABLE CELLS
ACTIVATE A TASK

IF WAITING FOR A CELL
RETURN SKIPPING PARAMETER

0l
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

0001

LGET

wve we

we Vo

we

ve

we we we

Ve Ve Ve Ve Ve Ve Ve Ve Ve we

we

ve we

.
3
.
3

141

DOUBLE ENDED QUEUE HANDLERS

E. WULFF 2-APR-71
MODIFIED 14-MAR-72
ROUTINE 4

GET A CELL FROM THE LEFT OF A D.Q.

CALLING SEQUENCE:
.LGET
(DQCB ADDRESS) OR @(POINTER TO DQCB ADDRESS)
(NEXT STATEMENT)

OUTPUT:
THE ADDRESS OF THE NEW CELL IS PASSED IN AC2
THE ADDRESS OF THE NEW CELL - 1 IS PASSED
IN LOCATION 20. LOCATION 20 CAN BE USED AS AN
AUTO-INCREMENTING INDEX FOR ACCESSING WORDS IN
THE CELL.
THE WORD LENGTH OF THE NEW CELL IS PASSED IN
LOCATION 30, LOCATION 30 CAN BE USED AS
A WORD COUNTER WHEN ACCESSING THE CELL.

SEQUENCING:
IF NO CELL IS AVAILABLE FROM THE D.Q.
THE TASK MAKING THE CALL IS SUSPENDED
UNTIL A CELL BECOMES AVAILABLE. THEN
THE TASK MAKING THE CALL IS RE-ACTIVATED

; DESTROYED: AC2,AC3,L6,L20 AND L30 (ALSO SAV2)

s UNCHANGED: ACO,AC1,CARRY,L7 AND L21

0002 LGET

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

C
L

LGET
LOWER
L.GET

RAISE
SAV2
+LGET

0003

.TITL
.ENT

.EXTD
« EXTN

«ZREL

00000-000000"'LGET:

006000~

«LGET=

.NREL

00000'054020 L.GET:

00001'035400
00002'175112
00003'000776
00004'054006

00005'177777
00006'100006
00007'034006

00010'060277
00011'044004$
00012'025403$%
00013'044030
00014'031401$
00015'025001$
00016'045401$%
00017'135000
00020'025M2$
00021'045402%
00022'024004$
00023'060177

00024'010®6
00025'010006

00026'177777
00027'100006

00030'034020

00031'050020
00032'014020

00033'001401

LGET

000003$x
0000018X
000000~
000005'X
000000°'
000002s$X
000026'X
000004 $X
006000~

. END

2/27
2/29
2/10
2/21
2/10
2/33
2/41
2/26
2/11

142

LGET

.LGET,LGET
L,R,C,SAV2
LOWER, RAISE

L.GET

JSR @LGET

STA
LDA
IFM
JMP
STA

LOWER
@6
LDA

INTDS
STA 1,SAV2
LDA
STA
LDA
LDA
STA
MOV
LDA
STA
LDA
INTEN

ISZ
ISZ

(o))}

RAISE
@6

LDA

STA
DSZ

JMP

3,20
2,20
20

1,3

2/30
2/11

2/15
2/34

2/35

2/31

we Wwe Ve Ve we

e we Ve we

H

.
s

.
L

H]

E

H

.
L]

DEFINE CALLING MNEMONIC

SAVE RETURN

DQCB ADDRESS

TEST IF POINTER

YES - TRY AGAIN

POINT TO 1ST SEMAPHORE

NO. OF AVAILABLE CELLS

DQCB ADDRESS AGAIN
SECURE DURING RE-LINKING

SAVE ACl IN TEMP. REG.
CELL LENGTH FROM DQCB

; PASS TO CALLER IN L30

NEW CELL FROM LEFT OF DQCB
MOVE ADDRESS OF NEXT
LEFT CELL IN DQCB

MOVE RIGHT LINK
TO NEXT CELL
RESTORE ACl1
RELEASE

;3 POINT TO 2ND SEMAPHORE

s NO. OF EMPTY CELLS

RESTORE RETURN
SET UP L20 AS AUTO-INCREMENTING
POINTER TO NEW CELL

s RETURN

143

0001 RGET
01
02 s DOUBLE ENDED QUEUE HANDLERS
03 H :
04
05 ;s E. WULFF 2-APR-71
06 s MODIFIED 14-MAR-72
07
08 3 ROUTINE 5
09
10 3 GET A CELL FROM THE RIGHT OF A D.Q.
11
12 3 CALLING SEQUENCE:
13 ; «RGET
14 H (DQCB ADDRESS) OR @(POINTER TO DQCB ADDRESS)
15 H (NEXT STATEMENT)
16
17 ; OUTPUT:
18 3 THE ADDRESS OF THE NEW CELL IS PASSED IN AC2
19 H THE ADDRESS OF THE NEW CELL - 1 IS PASSED
20 3 IN LOCATION 20. LOCATION 20 CAN BE USED AS AN
21 H AUTO-INCREMENTING INDEX FOR ACCESSING WORDS IN
22 3 THE CELL.
23 H THE WORD LENGTH OF THE NEW CELL IS PASSED IN
24 H LOCATION 30. LOCATION 30 CAN BE USED AS
25 ; A WORD COUNTER WHEN ACCESSING THE CELL.
26
27 ; SEQUENCING:
28 H IF NO CELL IS AVAILABLE FROM THE D.Q.
29 H THE TASK MAKING THE CALL IS SUSPENDED
30 H UNTIL A CELL BECOMES AVAILABLE. THEN
31 H THE TASK MAKING THE CALL IS RE-ACTIVATED
32
33 ;s DESTROYED: AC2,AC3,L6,L20 AND L30 (ALSO SAV2)

34 ; UNCHANGED: AC0,AC1,CARRY,L7 AND L21

0002 RGET

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

LOWER

RAISE
RGET
R.GET
SAV2
+«RGET

0003

«.TITL
« ENT

.EXTD
« EXTN

«ZREL

00000~000000"'RGET:

006000~

«RGET=

«NREL

00000'054020 R.GET:

00001'035400
00002'175112
00003'000776
00004 '054006

00005'177777
00006 '100006
00007'034006

00010'060277
00011'044004$%
00012'025403$%
00013'044030
00014'031402%
00015'02500%
00016'045402%
00017'135000
00020'0250015%

00021'045401$

00022'024004$
00023'060177

00024'010006
00025'010006

00026'177777
00027'100006

00030'034020
00031'050020
00032'014020
00033'001401

RGET

0000038X
000001$X
000005'X
0000028X
000026'X
000000~
000000"'
000004$X
006000~

.END

2/27
2/33
2/21
2/29
2/41
2/10
2/10
2/26
2/11

144

RGET

.RGET,RGET
L,R,C,SAV2
LOWER ,RAISE

R.GET

JSR

STA
LDA
IFM
JMP
STA

LOWER

@6
LDA

INTDS

STA
LDA
STA
LDA
LDA
STA
MoV
LDA

STA

LDA

INTEN

ISZ
ISz

RAISE

@6

LDA
STA
DSZ
JMP

2/34
2/30
2/11

2/15
2/35

@RGET

3,20
2,20
20
1,3

2/31

we Ve Ve Ve Ve

we Ve Ve Ve Ve Ve Ve

.
H

Ve we Ve we

DEFINE CALLING MNEMONIC

SAVE RETURN
DQCB ADDRESS

TEST IF POINTER

YES - TRY AGAIN

POINT TO 1ST SEMAPHORE

NO. OF AVAILABLE CELLS
DQCB ADDRESS AGAIN

SECURE DURING RE-LINKING
SAVE AC1 IN TEMP. REG.

CELL LENGTH FROM DQCB

PASS TO CALLER IN L30

NEW CELL FROM RIGHT OF DQCB
MOVE ADDRESS OF NEXT

RIGHT CELL IN DQCB

MOVE LEFT LINK
s TO NEXT CELL

;3 RESTORE ACl

RELEASE

POINT TO 2ND SEMAPHORE

NO. OF EMPTY CELLS

RESTORE RETURN

SET UP L20 AS AUTO-INCREMENTING

POINTER TO NEW CELL
RETURN

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
bt
45
46
47
48
49
50
51
52

0001 CELLO

00000'041001
00001'102620
00002'041000
00003'177777
00004 '100040
00005'177777
00006 '100007
00007 '000000

00010'177777
00011'100040

00012'006041
00013'000005"'

00014'177777
00015'177777

00016'000772

0002 CELLO

CELLO

CL

000000"
000013'X

FREE
LOOP
.DQIN
.LPUT
.RGET

000015'X
000010'

000003'X
000014'X
000010'X

we

145

RE-ENTRANT CELL OUTPUT ROUTINE

we

E.

ve we

IS IN

Ve Ve Ve Ve Ue Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve

.TITL

« EXTN

.NREL

CELLO:

LOOP:

«END

1/32
1/37
1/48
1/41
1/35
1/47
1/41

WULFF
MODIFIED

IS EXHAUSTED.
USERS PUT CELLS ON THE D.Q.
IF MORE THEN THE MAX. NO.
IN LOC 7 OF THE TCB ARE PUT ON THE D.Q., THE

USER TASK IS SUSPENDED UNTIL THIS TASK GETIS A
CELL FROM THE D.Q.

LOCATION 40.

CELLO

CELLO

23-JUL-71
4-JUL~-72

INITIALISE THE EVENT CONTROL WORDS XXXEl & XXXE2
TO 000000 & 100000 RESPECTIVELY. THE ADDRESS OF
XXXE1 IS PASSED IN AC2, XXXE2 IS ASSUMED TO BE IN
THE WORD AFTER XXXEI1,

INITIALISE A D.Q. WHOSE CONTROL BLOCK ADDRESS
THEN OUTPUT CELLS FROM

THAT D.Q. VIA A ROUTINE WHOSE ADDRESS IS IN
LOCATION 41. DEFINE A TCB AND A DQCB FOR EACH
DEVICE SHARING THIS ROUTINE.

THE TASK WILL SUSPEND ITSELF WHENEVER IT'S D.Q.
IT WILL BE RE-ACTIVATED WHENEVER

OF CELLS SPECIFIED

.DQINI, .RGET, .LPUT,FREE,CL

STA
SUBZR
STA
.DQINI
@40

CL

@7

o OO
v v v
O O

«RGET
@40

JSR
CL

@41
.LPUT
FREE

JMP LOOP

1/45

1/50

Ve Yo Ve Ve Ve Ve Ve W

XXXE2 (- O

100000

XXXE1 COMPL. BIT SET
INITIALISE THE D.Q.

DQCB ADDRESS IN L40

CELL LENGTH IN BYTES

MAX. NO. OF CELLS IN L7
ZERO NO. OF CELLS INITIALLY

GET NEXT CELL FOR OUTPUT
WAIT IF NONE THERE

OUTPUT THE CELL
MAX. NO. OF BYTES

RETURN THE CELL TO THE
FREE DOUBLE ENDED QUEUE

146

s TO FORCE DEBUG 1.5 TO BE LOADED

1B1+1B4+1B5+1B7+1B12+1B13; INITIALISATION CONTROL WORD

AC2

PC

DEBUG PC
PMASK TTI, TTO, INI, INO
L7 - 1 CELL ALLOWED

L40 - DQCB ADDRESS
L41 - OUTPUT ROUTINE

LINKS
SEMAPHORES & CONSTANT
SEMAPHORE

+1

SEMAPHORE

0001 TTODQ
01
02 s PRINT TTODQ ON THE TELETYPE
03 H
04
05 s E. WULFF 23-JUL-71
06 ;s MODIFIED 4=-JUL~72
07
08 ;3 DEFINES TCB AND DQCB FOR CELLO
09
10 .TITL TTODQ
11
12 .ENT TTODQ, TCBO
13 « EXTN CELLO,TTOElL
1KU .IFN T
15 +« EXTN DBl.5
16 «ENT SEMDT
17K «ENDC
18 «EXTD PUTB
19
20 .NREL
21
22 3 TASK CONTROL BLOCK
23
24 000020 TCBO: .BLK 20
25
26 ;s INITIAL VALUES FOR TCB
27
28 00020'046414
29 00021'177777 TTOEL 3
3KU LIFE T
31 00022'177777 CELLO 3
32K «ENDC
3KU IFN T
34 00023'000037"' START H
35K .ENDC
36 00024'000003 3 3
37 00025'000001 1 :
38 00026'000032"' TTODQ 3
39 00027'100001$ @PUTB 3
40
41 s D.Q.. CONTROL BLOCK
42
43 000002 .BLK 2 :
44 000005 TTODQ: .BLK 5 ;
45
46 ;s INITTIALISATION OF DEBUG
4KU IFN T
48 00037'040405 START: STA 0, SEMDT
49 00040'010404 ISZ SEMDT 3
50 00041'040404 STA 0, SEMDT+1
51 00042'002401 JMP @.+1
52 00043'000022" CELLO
53
54 000002 SEMDT: .BLK 2 R
55
56 «END

0002

CELLO
DB1.5
PUTB

SEMDT
START

TCBO
TTODQ
TTOEL

TTODQ

000043'X
177777 X
000001$X
000044 "
000037"
000000U
000000
000032'
000021'X

1/31

1/39
1/48
1/34
1/14
1/24
1/38
1/29

147

1/52

1/49
1/48
1/30

1/44

1/50

1/33

1/54

1/47

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4t
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

0002 PUTB

000001

00000-000000"'
00001-000001"

00000'102001
00001'102460
00002 '054006

000001
00003'177777
00004'177777

00005'177777
00006'177777
00007'176460
00010'056776

00011'036006
00012'010006
00013'054001$

00014'060277
00015'175200
00016'054003%
00017'050002%

00020'006414

00021'060277
00022'006413

148

3 BYTE BUFFERED PRINT CHARACTER ROUTINE

.
3

; E. WULFF 7-JULY-71
; MODIFIED 4-JUL-T72
; INPUT:

.
E]

.
b

AC2 MUST CONTAIN THE WORD ADDRESS
OF THE FIRST BYTE IN THE BUFFER

3 CALLING SEQUENCE:

b
b
.
H

JSR @PUTB OR JSR @PUTBI
MAX NO. OF BYTES IN THE BUFFER
NEXT STATEMENT

; DESTROYED: ACO,AC3 AND L6

.TITL PUTB
.ENT PUTB,PUTBI
.EXTD TTOBC,SAV2,SAVC
.EXTN .WAIT,TTOEl,TTOE2,TTOFB,TTOPB
JIFN T ; DEBUG TASK
.EXTN LOWER,RAISE,SEMDT
.ENDC
.ZREL
PUTB: RPUTB
PUTBI: RPUTI
.NREL
RPUTB: ADC 0,0,SKP ; ACO USED AS IMMEDIATE FLAG
RPUTI: SUBC 0,0
STA 3,6 ; SAVE RETURN ADDRESS AT LOC 6
JIFN T
LOWER
SEMDT ; SEMAPHORE FOR DEB TASK
.ENDC ,
JWAIT ; WAIT FOR END OF LAST CHARACTER
TTOEL ; IN THE PREVIOUS BUFFER
SUBC 3,3
STA 3,@.-2
LDA 3,@6 ; GET BUFFER COUNT
ISz 6
STA 3,TTOBC ; STORE IN OUTPUT ROUTINE
INTDS
MOVR 3,3 ; SAVE CARRY
STA 3,SAVC
STA 2,SAV2 3 SAVE BUFFER POINTER IN AC2
; STORE BYTE POINTER IN TTOBP
JSR @ATTOF ; FETCH FIRST BYTE INTO TTOCH
INTDS ; DISPLAY FIRST BYTE

JSR @ATTOP 3 FETCH 2ND BYTE IF THERE

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

0003 PUTB
00023'101015 IFZ o,
00024'002006 JMP @6
00025'000005" JWAIT
00026'177777 TTOE2
00027'176460 SUBC 3,
00030'056776 STA 3,
000001 JIFN T
00031'177777 RAISE
00032'000004"' SEMDT
.ENDC
00033'002006 JMP @6
00034'177777 ATTOF: TTOFB
00035'177777 ATTOP: TTOPB
.END
0004 PUTB

ATTOF 000034'
ATTOP 000035
LOWER 000003'X
PUTB 000000~
PUTBI 000001~
RAISE 000031'X
RPUTB 000000’
RPUTI 000001'
SAV2 0000028X
SAVC 000003%X
SEMDT 000032'X
TTOBC 000001$X
TTOEL 000006'X
TTOE2 000026'X
TTOFB 000034'X
TTOPB 000035'X
JWAIT 000025'X

2/56 3/15
2/59 3/16
2/39
2/30
2/31
3/10
2/30 2/35
2/31 2/36
2/54
2/53
2/40 3/11
2/49
2/43
3/06
3/15
3/16
2/42 3/05

H

b

3

b

;3 TEST RETURN MODE
s RETURN IMMEDIATELY

WAIT FOR BEGINNING OF LAST

s CHARACTER TRANSMITTED

RETURN

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

0001

TTODR

Ve We Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve

Ve we Ve Ve

150

TELETYPE BYTE ORIENTED PRINT INTERRUPT SERVICE

XXX

E. WULFF 12-JULY-71
VERS. II

THIS INTERRUPT SERVICE ROUTINE SERVICES THE FOLLOWING

CONTROL CODES:

00 MARK LAST BYTE OF A STRING

01 INSERT CRLF

02 INSERT CRLF

04 'EOT' SUBSTITUTE FOR TAB

05 'ENQ' SUBSTITUTE FOR FORM FEED
10 CR ONLY

11 TAB TO THE NEXT COLLUMN OF 8

12 LINE-FEED (THE FIRST LF AFTER CR IS IGNORED)

14 FORM-FEED (COMPLETE THE CURRENT PAGE)
15 CARRTAGE-RETURN (INSERT LF)

17 SUBSTITURE ¢

31 SUBSTITUTE SPACE

32 SUBSTITUTE __

34 SUBSTITUTE

35 SUBSTITUTE LF

37 SUBSTITUTE =

177 RUB-OUT IS IGNORED

ANY OTHER CONTROL CODES ARE NOT TRANSMITTED.

THE CONSTANTS ARE CORRECT FOR AN OLIVETTI TERMINAL

TYPE 308, ADJUSTED FOR 80 CHARACTER LINES.
THE PAGE LENGTH IS 60 LINES WITH 6 EXTRA LINES
TO COMPLETE AN 11" PAGE.

.TITL TTODR

+ENT

.EXTD C177,C12,C15,RTI,POSTI,SAV2,SAVC

TTOS,TTOBP,TTOBC,TTOCH,TTOFB,TTOPB,TTOEL, TTOE2

0002 TTODR

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

00000-000000
00001-000000
00002-000000

00000'00015%"'
00001'000171"
00002'000171"'
00003'000147"
00004'000213"
00005'000205"
00006'000147"
00007 '000147"'
00010'100015
00011'000213"
00012'000202"
00013'000147"
00014'000205"
00015'000172"
00016'000147"
00017'100135
00020'000147"
00021'000147"'
00022'000147'
00023'000147"
00024'000147"
00025'000147"
00026'000147"
00027'000147"
00030'000147"'
00031'100040
00032'100137
00033'000147"'
00034'100136
00035'100012
00036'000147"'
00037'100133

00040'054000
00041'155020
00042'000420

00043'054000

00044'010001~

; BUFFER CONS
.ZREL

TTOBP: O
TTOBC: O
TTOCH: 0
.NREL

; TABLE OF CO
ILS: LBYTE
ICR
ICR
NOCH
TAB
FF
NOCH
NOCH
@15
TAB
LF
NOCH
FF
CR
NOCH
@llc
NOCH
NOCH
NOCH
NOCH
NOCH
NOCH
NOCH
NOCH
NOCH
@40
@"
NOCH
@ll
@12
NOCH
@"i

s ENTER HERE

TTOFB: STA
MOVZ
JMP

ENTER HERE

.
L

TTOPB: STA 3

; ENTER HERE

TTOS * Ic2

151

TANTS

NTROL CHARACTER ROUTINES

NULL MARKS LAST BYTE
CURSOR SAVE
CURSOR RESTORE

we we we

; EOT
; ENQ

;s HOME
;s TAB
s LINE FEED

s FORM-FEED
3 CARRIAGE RETURN

; BLINK OFF

s CURSOR RIGHT
;s " LEFT

UP
" DOWN

BLINK ON

BUFFERED OUTPUT TO FETCH FIRST BYTE

2,3 s CHANGE TO MOVR FOR BYTE ADDRESS

FROM BUFFERED OUTPUT TO TRANSMIT FIRST BYTE
0

FROM INTERRUPT HANDLER

TTORC

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59

0003 TTODR
00045'014001-
00046'000404

00047'060211
00050'006005$
00051'000252"

DSz
JMP

NIOC
JSR
TTOEl

152

TTOBC
TTON

TTO
@POSTI

s OUTPUT THE PREVIOUS CHARACTER

00052'175200 TTON:
00053'054007$%
00054'050006$
00055'030002-
00056'071111
00057'002554

; FETCH

00060'034000-NBYTE:
00061'175600
00062'031400 NBl:
00063'175012
00064'151300
00065'175100

00066 '054000~

00067 '034001$
00070' 173405
00071'050001~

00072'156415
00073'000454

00074'034541
00075'156032
00076'004465

00077'050002-CH:
00100'014537
00101'000456

00102'034536
00103'054534

00104'004452
00105'030534
00106'050002-
00107'004447
00110'030532

00111'050002-LF1:
00112'014531
00113'000433
00114'004442

00115'034527 FF2:
00116'054525

00117'034526
00120'054531

MOVR
STA
STA
LDA
DOAS
JMP

NEXT

LDA
INCR
LDA
MOV#
MOVS
MOVL
STA

LDA
AND
STA

IFEQ
JMP

LDA
IFLT
JSR

STA
DSZ
JMP

LDA
STA

JSR
LDA
STA
JSR
LDA

STA
DSZ
JMP
JSR

LDA
STA

LDA
STA

3,3
3,SAVC
2,SAV2
2, TTOCH
2,TTO

@LINK s SET UP BY SLINK

BYTE AND ANALYSE

; CLEAR 'BC' FOR NULL BYTE

3,C40
2,3
CCH

TEST FOR CONTROL CHARACTER
YES - CONTROL CHARACTER

wve we

2,TTOCH
CHC H
RESTO

CHARACTER COUNT

3 CLL
3,CHC

LINE LENGTH

OUTPUT CHARACTER
1ST DUMMY

SLINK
2,CHI1 ;
2,TTOCH
SLINK
2,CHI2 ; 2ND DUMMY
2,TTOCH
LIC
NLINK
SLINK

LINE COUNT
BACK TO NORMAL
OUTPUT LAST CHARACTER

we we we

3,PAGEL ;
3,LIC

3, LOWC
3,TABC

PAGE LENGTH

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4é
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59

0004 TTODR
00121'030003$%

00122'050002-LOW:
00123'004433
00124'030002%
00125'014524
00126'000774

00127'034517
00130'054521
00131'030517
00132'050002-

00133'004423 ACROSS:
00134'014515
00135'000776

00136'034511
00137'054512
00140'030003%

00141'050002-TOP :
00142'004414
00143'030002%
00144'014505
00145'000774

LDA

STA
JSR
LDA
DSZ
JMP

LDA
STA
LDA
STA

JSR
DSZ
JMP

LDA
STA
LDA

STA
JSR
LDA
DSZ
JMP

153

2

2

,C15

, TTOCH

SLINK

2

,C12

TABC
Low

3,DASHC
3,TABC

2
2

,DASH
, TTOCH

SLINK
TABC
ACROSS

3

, TOPC

3, TABC

2

2

,Cl5

, TTOCH

SLINK

2

,C12

TABC
TOP

s NORMAL LINK AGAIN

00146'004410 NLINK:

JSR

SLINK

s NO CHARACTER ENTRY

00147'014001~NOCH:
00150'000710

00151'030006$LBYTE:
00152'034007$
00153'175100
00154'006005%
00155'000253"

DSZ
JMP

LDA
LDA
MOVL
JSR
TTOE2

TTOBC
NBYTE

2
3
3

,SAV2
,SAVC
.3

@POSTI

ve

we

s

b

ve

EXTRA CR

OUTPUT

; EXTRA LF'S

3 NO OF DASHES

NO OF LF'S AT TOP

5 SAVE LINK SUBROUTINE ENTRY

00156'054455 SLINK:

STA

3

,LINK

5 RESTORE STATUS AND RETURN

00157'030006SRESTO:
00160'034007$
00161'175100
00162'002004$%

LDA
LDA
MOVL
JMP

2
3
3

,SAV2
,SAVC
.3

@RTI

s CONTROL CHARACTER

00163'157000 CCH:
00164'035701

00165'175113
00166 "001400

ADD
LDA

IFZP
JME

QL WN

,3
,TLS~CH
,3
»3

»3

b
.
£

COMPUTE TABLE ENTRY

s TEST BIT O

ENTER SPECIAL ROUTINE

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59

0005 TTODR

00167'171000
00170'000707

MOV
JMP

154

3,2 3
CH

SUBSTITUTE OTHER CHARACTER

3 CONTROL CHARACTER ROUTINES

00171'030003$ICR:

00172'050002-CR:
00173'034445
00174'054443
00175'004761

00176'030002$
00177'176000
00200'054436
00201'000710

00202'010434 LF:
00203'000706
00204'000743

00205'030002$FF:
00206 '050002~

00207'004747 FFl:
00210'014433
00211'000776
00212'000703

s THIS TAB ROUTINE WILL ONLY WORK WITH A LINE
3 LENGTH (CLL) WHICH IS A MULTIPLE OF EIGHT

00213'034422 TAB:
00214'054002~
00215'014422
00216'000401
00217'034420
00220'030414
00221'173405
00222'000747

00223'050414
00224'156405
00225'000721

00226'054423

00227'004727 TAl:
00230'014421
00231'000776
00232'000714

LDA

STA
LDA
STA
JSR

LDA
ADC
STA
JMP

ISZ
JMP
JMP

LDA
STA

JSR
DSZ
JMP
JMP

LDA
STA
DSz
JMP
LDA
LDA
AND
JMP

STA
SUB
JMP

STA

JSR
DSZ
JMP
JMP

2,C15 H

2, TTOCH
3,CLL
3,CHC
SLINK

2,C12
3,3
3,LFLAG
LF1

LFLAG
LF1
NOCH H

2,C12
2,TTOCH

SLINK
LIC
FF1l
FF2

3,C40 H
3, TTOCH
CHC

.+1
3,CHC
2,CC7
3,2,SNR
ICR

2,CHC
2,3,SNR
NLINK

3,TABC

SLINK
TABC
TAl
NLINK

s CONSTANTS AND VARIABLES

00233'000147'LINK:

00234'177770 CC7:
00235'000040 C40:

00236'000000 LFLAG:

00237'000001 GCHC:

NOCH
177770
40

0
1

INSERT CR-LF

IGNORE FIRST LF AFTER CR

SPACE

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

0006 TTODR

00240'000120
00241'000015
00242'000177
00243'000001
00244'000074
00245'000005
00246'000003
00247'000002
00250'000055
00251'000000

00252'100000
00253'000000

CLL:
CHI1:
CHI2:
LIC:
PAGEL:
LOWC:
DASHC:
TOPC:
DASH:
TABC:

TTOEL:
TTOE2:

.END

80.
15
177
1
60.
5.
3.
2.

n

0

100000
0

155

Ve we Ve Ve

LINE LENGTH (72. FOR ASR 33)

(15 FOR ASR 33)
(12 FOR ASR 33)

11" PAGE (60 LINES)
CR + 4 LF'S LOW MARGIN

NO OF DASHES
CR + 2 LF'S

TOP MARGIN

0007

ACROS
Cl2
Cl5
Cl177
C40
cc7
CCH
CH
CHC
CHI1
CHI2
CLL
CR
DASH
DASHC
FF
FF1
FF2
ICR
ILS
LBYTE
LF
LF1
LFLAG
LIC
LINK
LOW
LOWC
NB1
NBYTE
NLINK
NOCH

PAGEL
POSTI
RESTO
RTI
SAV2
SAVC
SLINK

TAl
TAB
TABC

TOP
TOPC
TTOBC
TTOBP
TTOCH

TTOEL
TTOE2
TTOFB
TTON

TTOPB
TIOS

TTODR

000133"
000002$X
000003$X
0000018X
000235"
000234
000163"
000077'
000237'
000241'
000242'
000240'
000172"'

'000250"

000246"'
000205"
000207
000115"
000171'
000000"'
000151"'
000202
000111’
000236
000243
000233
000122'
000245"
000062
000060"'
000146"
000147'

000244
0000058X
000157
000004$X
000006$X
000007 $X
000156"'

000227'
000213'
000251"

000141"
000247"'
000001~
000000~
000002~

000252"'
000253"
000040"'
000052"'

000043"'
000044"

4/14
4/05
4/01
3/27
3/34
5/39
3/36
3/38
3/39
3/46
3/49
3/42
2/27
4/11
4/09
2/19
5/26
3/56
2/15
2/14
2/14
2/24
3/51
5/16
3/52
3/15
4/03
3/58
2/51
3/19
3/53
2/17
2/33
3/32
3/56
3/05
3/40
4/52
3/12
3/11
3/45
5/12
5/49
2/18
3/59
6/10
4/22
4/18
2/07
2/06
2/08
5/09
3/06
4/41
2/49
3/02
2/55
2/59

156

4/16
4/24
4/20

5/34
5/56
4/56
4/57
3/43
6/02
6/03
5/10
5/09
6/09
6/07
2/26
5/28
5/29
2/16
4/57
4/37
5/19
5/17
5/19
3/57
4/45
4/07
6/06
3/21
4/35
4/30
2/20
2/34
4/34
6/05
4/40
4/49

4/37
4/38
3/48
5/26
5/51
2/23
4/06

4/26
6/08
2/59
3/19
3/13
5/24
6/12
6/13

3/10

5/14
5/07

5/57

5/03
5/11

6/01

5/23

5/07

5/20
5/58
5/27
5/55

5/45
2/21
2/35
5/21

4749
4/50
3/54
5/49

5/34
4/10

3/01
3/25
3/38
5/35

5/23

5/36

5/41

6/04

5/52
2/25
2/36
5/55

4/04

4/15

3/29

3/47

5/38

2/28
2/37

4/14

4/19

4134

3/51

5/43

2/30
2/38

4/23

4/25

4/03

5/59

2/31
2/41

4/30

5/47

4/12

2/32
2/44

4/45

5/50

4/22

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

0001 INODQ

000020

00020'046414
00021'177777
00022'177777
00023'000003
00024'000003
00025'000031"
00026'100001%

000002
000005

0002 INODQ

CELLO 000022'X
INDB 000001$X
INODQ 000031’
INOE1 000021'X
TCBL 000000"'

157

;3 PRINT INODQ ON THE INFOTON

ve we

.TITL
«ENT

- EXTN
. EXTD

.NREL

E. WULFF
MODIFIED 4=JUL~72

INODQ

INODQ, TCBL
CELLO, INOEL
INDB

3 TASK CONTROL BLOCK

TCBL:

«BLK 20

s INITIAL VALUES FOR TCB

23-JUL-71

s DEFINES TCB AND DQCB FOR CELLO

1B1+1B4+1B5+1B7+1B12+1B13; INITTALISATION CONTROL WORD

s D.Q..

INODQ:

.END

1/26
1/30
1/29
1/25
1/20

@INDB

INOE1 ;
CELLO
3
3
INODQ

Ve Ve Ve Ve Ve v

CONTROL BLOCK

«BLK 2
«BLK 5

wve we

1/35

AC2

PC

PMASK TTI, TTO, INI, INO
L7 - 3 CELLS ALLOWED

L40 - DQCB ADDRESS

L41 - OUTPUT ROUTINE

LINKS
SEMAPHORES & CONSTANT

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59

158

0002 INDB
; BYTE BUFFERED DISPLAY CHARACTER ROUTINE (DEV.51)
5
5 XXX
;s E. WULFF. 18-MAY-71
s INPUT:
: AC2 MUST CONTAIN THE WORD ADDRESS
3 OF THE FIRST BYTE IN THE BUFFER
s CALLING SEQUENCE:
3 JSR @INDB OR JSR @INDBI
3 MAX NO. OF BYTES IN THE BUFFER
: NEXT STATEMENT
; DESTROYED: AC0,AC3 AND L6
.TITL. INDB
.ENT INDB, INDBI
.EXTD WAIT,INOBC,SAV2,SAVC
.EXTN INOEl,INOE2,INOFB,INOPB
.ZREL
00000-000000"INDB: RINDB
00001-000001'INDBI: RINDI
.NREL
00000'102001 RINDB: ADC 0,0,SKP ; ACO USED AS IMMEDIATE FLAG
00001'102460 RINDI: SUBC 0,0
00002'054006 STA 3,6 s SAVE RETURN ADDRESS AT LOC 6
00003'006001$ JSR @WAIT s WAIT FOR END OF LAST CHARACTER
00004'177777 INOE1 ;s IN THE PREVIOUS BUFFER
00005'176460 SUBC 3,3
00006'056776 STA 3,@.-2
00007 '036006 LDA 3,@6 s GET BUFFER COUNT
00010'010006 ISZ 6
00011'054002$% STA 3,INOBC ; STORE IN OUTPUT ROUTINE
00012'060277 INTDS
00013'175200 MOVR 3,3 ; SAVE CARRY
00014'054004$ STA 3,SAvVC
00015'050003$ STA 2,SAV2 ; SAVE BUFFER POINTER IN AC2
3 STORE BYTE POINTER IN INOBP
00016'006412 JSR @AINOF ; FETCH FIRST BYTE INTO INOCH
00017'060277 INTDS s DISPLAY FIRST BYTE
00020'006411 JSR @AINOP ; FETCH 2ND BYTE IF THERE
00021'101015 IFZ 0,0 s TEST RETURN MODE
00022'002006 JMP @6 s RETURN IMMEDIATELY
00023'006001$ JSR QWAIT ; WAIT FOR BEGINNING OF LAST
00024'177777 INOEZ 3 CHARACTER TRANSMITTED

0003 INDB
01 00025'176460
02 00026'056776

03

04 00027'002006

05

SUBC
STA

JMP

06 00030'177777 AINOF: INOFB
07 00031'177777 AINOP: INOPB

08
09

0004

AINOF
AINOP
INDB

INDBI
INOBC
INOE1
INOE2
INOFB
INOPB
RINDB
RINDI
SAV2

SAVC

WAIT

.END

INDB

000030"'
000031'
000000~
000001~
000002$X
000004 'X
000024 'X
000030'X
000031'X
000000'
000001'
000003$X
000004$X
000001$X

2/50
2/53
2/28
2/29
2/43
2/37
2/59
3/06
3/07
2/28
2/29
2/48
2/47
2/36

3/06
3/07

2/33
2/34

2/58

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0001

INODR

ve

Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve ve

Ve Ve Ve we Ve

160

INFOTON BYTE ORIENTED DISPLAY INTERRUPT SERVICE

XXX

E. WULFF 4=JULY-71
VERS. VII

THIS INTERRUPT SERVICE ROUTINE SERVICES THE FOLLOWING
CONTROL CODES:

00 MARK LAST BYTE OF A STRING

01 SAVE THE POSITION OF THE CURSOR

02 RESTORE THE CURSOR TO THE POSITION LAST SAVED
10 HOME THE CURSOR WITHOUT ERASING

11 TAB TO THE NEXT COLUMN OF 8

12 LINE-FEED (THE FIRST LF AFTER CR IS IGNORED)
14 ERASE SCREEN AND HOME CURSOR

15 CARRIAGE~-RETURN

17 BLINK-OFF

31 CURSOR RIGHT

32 CURSOR LEFT

34 CURSOR UP

35 CURSOR DOWN

37 BLINK-ON

177 RUB-OUT (ERASE CHAR. ON THE LEFT)

ANY OTHER CONTROL CODES ARE NOT TRANSMITTED.

THE COSTANTS ARE CORRECT FOR AN INFOTON DISPLAY
WITH 20 LINES, 64 CHARACTERS PER LINE AND SET TO
'ROLL' MODE. A CURSOR COUNT IS MAINTAINED WHICH
FOLLOWS THE ACTUAL CURSOR ON THE SCREEN. THE CURSOR
SAVE AND RESTORE FEATURE MAKE USE OF THIS COUNT.

.TITL INODR

. «ENT INOS, INOBP, INOBC,INOCH, INOFB,INOPB,INOEl, INOE2

.EXTD C177,C12,RTI,POSTI,SAV2,SAVC

161

0002 INODR

01

02 ;s BUFFER CONSTANTS
03

04 .ZREL

05

06 00000-000000 INOBP: O

07 00001-000000 INOBC: O

08 00002-000000 INOCH: O

09
10 .NREL

11

12 ; TABLE OF CONTROL CHARACTER ROUTINES
13

14 00000'000137'ILS: LBYTE ; NULL MARKS LAST BYTE
15 00001'000146" CSAVE s CURSOR SAVE

16 00002'000151" CRSTR ; CURSOR RESTORE

17 00003'000135" NOCH

18 00004'000135" NOCH

19 00005'000135" NOCH

20 00006'000135" NOCH

21 00007'000135" NOCH

22 00010'000216" HOME ; HOME

23 00011'000200" TAB ; TAB

24 00012'000213" LF ; LINE FEED

25 00013'000135"' NOCH

26 00014'000216" HOME s ERASE

27 00015'000116" CR ; CARRIAGE RETURN

28 00016'000135"' NOCH

29 00017'000071"' CH ; BLINK OFF

30 00020'000135" NOCH

31 00021'000135" NOCH

32 00022'000135" NOCH

33 00023'000135" NOCH

34 00024'000135" NOCH

35 00025'000135"' NOCH

36 00026'000135" NOCH

37 00027'000135"' NOCH

38 00030'000135" NOCH

39 00031'000235" CSRRT ; CURSOR RIGHT

40 00032'000232"' CSRLT : " LEFT

41 00033'000135" NOCH ’

42 00034'000233" CSRuP ; " UP

43 00035'000236" CSRDN ; " DOWN

44 00036'000135" NOCH

45 00037'000071' CH 3 BLINK ON

46

47 ; ENTER HERE FROM BUFFERED OUTPUT TO FETCH FIRST BYTE
48

49 00040'054000 INOFB: STA 3,0

50 00041'155020 MOVZ 2,3 ; CHANGE TO MOVR FOR BYTE ADDRESS
51 00042'000412 JMP NB1

52

53 ; ENTER HERE FROM BUFFERED OUTPUT TO TRANSMIT FIRST BYTE
54

55 00043'054000 INOPB: STA 3 O

56

57 s ENTER HERE FROM INTERRUPT HANDLER
58

59 00044'010001-INOS: ISz INOBC

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
50

0003 INODR
00045'014001~
00046'000442

00047'060251
00050'006004$
00051'000270"'

00052'034000~NBYTE:
00053'175600
00054'031400 NB1:
00055'175012
00056'151300
00057'175100
00060'054000-

00061'034001$
00062'173405
00063'050001~

00064'156415
00065'000533

00066'034571
00067 '156032
00070' 004454

00071'010561
00072'050002~

CH:

00073'034557 ACSR:
00074'030571
00075'172032
00076 '000404

00077'030557
00100'156400
00101'054551

00102'030005$RESTO:
00103'034006%
00104'175100
00105'002003$

00106'054543 SLINK:
00107'000764

DSZ
JMP

NIOC
JSR
INOE1

LDA
INCR
LDA
MOV
MOVS
MOVL
STA

LDA
AND
STA

IFEQ
JMP

LDA
IF1T
JSR

ISz
STA

LDA
LDA
IFLT
JMP

LDA
SUB
STA

LDA
LDA
MOVL
JMP

STA
JMP

162

INOBC
INON

2,3
RUBOUT

3,C40
2,3
CCH

CUSR
2, INOCH

3,CUSR
2,CMAX
3,2
RESTO

2,C100
2,3
3,CUSR

2,SAV2
3,SAVC
3,3
@RTI

3,LINK
ACSR

s OUTPUT LAST CHARACTER

00110"175200 INON:
00111'054006$
00112'050005%
00113'030002-
00114'071151
00115'002534

MOVR
STA
STA
LDA
DOAS
JMP

3,3
3,SAVC
2,SAV2
2, INOCH
2,INO
@LINK

ve

CLEAR 'BC' FOR NULL BYTE

TEST FOR RUBOUT

TEST FOR CONTROL CHARACTER
YES - CONTROL CHARACTER

NORMAL CHARACTER
STORE

ADJUST CURSOR

SIMULATE ROLL

RETURN FROM INTERRUPT

s FOR EXAMPLE: CARRIAGE RETURN SERVICE

00116'050002-CR:
00117'024533

STA
LDA

2, INOCH
3,CUSR

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4t
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59

0004 INODR

00120'030534
00121'157400
00122'054530
00123'004763

00124'030002$%

00125'176000
00126'054536

00127'050002-LF1:

00130'034522
00131'030525
00132'157000
00133'054517

00134'004752 NLINK:

LDA
AND
STA
JSR

LDA
ADC
STA

STA
LDA
LDA
ADD
STA

JSR

163

2,M100
2,3
3,CUSR
SLINK

2,c12
3,3
3,LFLAG

2, INOCH
3,CUSR
2,C100
2,3
3,CUSR

SLINK

3 NORMAL LINK AGAIN

00135'014001-NOCH:

00136'000714

00137'030005$LBYTE:
00140'034006$

00141'175100

00142'006004$

00143'000271"

00144'157000
00145'003707

00146'034504 CSAVE:

00147'054504
00150'000765

00151'034502 CRSTR:

00152'054500
00153'054513
00154'034507

DSz
JMP

LDA
LDA
MOVL
JSR
INOE2

INOBC
NBYTE

2,SAV2
3, SAVC
3,3

@POSTI

;s CONTROL CHARACTER

CCH:

ADD
JMP

2,3

@ILS-CH, 3

s

b

b

s OUTPUT CR

OUTPUT LF OR ANY LAST CHAR.

COMPUTE TABLE ENTRY

s CONTROL CHARACTER ROUTINES

00155'054002-CRS1:

00156'034510
00157'030477
00160'156423
00161'000405

00162'054504
00163'004723
00164'034474
00165'000770

00166'034474
00167 '054500

00170'010476
001717000404

CRS2:

LDA
STA
JMP

LDA
STA
STA
LDA

STA
LDA
LDA
SUBZ
JMP

STA
JSR
LDA
JMP

LDA
STA
ISZ

3,CUSR
3,SCUSR
NOCH

3,SCUSR
3,CUSR
3, TABC
3,C10

3, INOCH
3, TABC
2,C100
2,3,SNC
CRS2

3, TABC
SLINK
3,C35
CRS1

3,C31
3,SPCH
TABC
CRS4

.
H]

s

SAVE CURSOR

HOME CHAR.

RESULT ~VE

; OUTPUT CHAR.
CURSOR DOWN CHAR.

CURSOR RIGHT

164

0005 INODR
01

02 00172'004714 CRS3: JSR SLINK

03 00173'034474 LDA 3,SPCH

04 00174'054002- STA 3, INOCH

05 00175'014471 CRS4: DSZ TABC

06 00176'000774 JMP CRS3

07

08 00177'000735 JMP NLINK ; OUTPUT LAST CHAR.
09

10 00200'034452 TAB: LDA 3,CUSR

11 00201'030454 LDA 2,M10 3 -10

12 00202'157400 AND 2,3

13 00203'156400 SUB 2,3

14 00204'030446 LDA 2,CUSR

15 00205'054445 STA 3,CUSR

16 00206'156400 SUB 2,3

17 00207'054457 STA 3, TABC

18 00210'034447 LDA 3,C40

19 00211'054456 STA 3,SPCH

20 00212'000762 JMP CRS4-1

21

22 00213'010451 LF: ISz LFLAG

23 00214'000713 JMP LF1

24 00215'000720 JMP NOCH ; IGNORE FIRST LF AFTER CR
25

26 00216'034434 HOME: LDA 3,CUSR ; RESET

27 00217'000420 JMP CSRDN+1

28

29 00220'034432 RUBOUT: LDA 3,CUSR

30 00221'175015 IFZ 3,3

31 00222'000407 JMP ROL ; UNDERFLOW. LEFT ONLY
32

33 00223'034436 LDA 3,C32

34 00224'054002- STA 3, INOCH

35 00225'004661 JSR SLINK ; OUTPUT CURSOR LEFT
36

37 00226'034431 LDA 3,C40

38 00227'054002- STA 3, INOCH

39 00230'004656 JSR SLINK ; OUTPUT SPACE

40

41 00231'030430 ROl: LDA 2,C32 3 CURSOR LEFT AGAIN
42

43 00232'176521 CSRLT: SUBZL 3,3,SKP ; +1.

44 00233'034423 CSRUP: LDA 3,100 ; +64.

45 00234'000403 JMP CSRDN+1

46

47 00235'176001 CSRRT: ADC 3,3,SKP ; -1.

48 00236'034416 CSRDN: LDA 3,M100 ; -64.

49 00237'050002- STA 2, INOCH

50 00240'030412 LDA 2,CUSR

51 00241'172400 SUB 3,2

52 00242'034423 LDA 3,CMAX

53 00243'151112 IFM 2,2

54 00244'173000 ADD 3,2

55 00245'156033 IFGE 2,3

56 00246'172400 SUB 3,2

57 00247'050403 STA 2,CUSR

58 00250'000664 JMP NLINK

59

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

0006 INODR
00251'000135"'

00252'000000
00253'000000
00254'177700
00255'177770
00256'000100
00257'000040
00260'000035
00261'000032
00262'000031
00263'000010
00264'000000
00265'002400
00266000000
00267 '000000

00270'100000
00271'000000

LINK:
CUSR:
SCUSR:
M100:
M10:
C100:
C40:
C35:
C32:
C31:
Clo0:
LFLAG:
CMAX:
TABC:
SPCH:

INOElL:
INOE2:

JBND

165

NOCH

-100
-10
100
40
35
32
31
10

0
2400
0

0

100000
0

166

0007 IkuDR

ACSR 000073" 3/30 3/45

clo 000263" 4/43 6/11

C100 000256" 3/35 4/12 4/47 5/44 6/06

c12 000002$X 4/06

Ccl177 000001$X 3/16

c31 000262" 4/56 6/10

c32 000261"' 5/33 5/41 6/09

C35 000260" 4/53 6/08

C40 000257"' 3/23 5/18 5/37 6/07

CCH 000144" 3/25 4/31

CH 000071' 2/29 2/45 3/27 4/32

CMAX 000265" 3/31 5/52 6/13

CR 000116" 2/27 3/58

CRS1 000155" 4/45 4/54

CRS2 000166"' 4/49 4/56

CRS3 000172' 5/02 5/06

CRS4 000175" 4/59 5/05 5/20

CRSTR 000151 2/16 4/40

CSAVE 000146"' 2/15 4/36

CSRDN 000236" 2/43 5/27 5/45 5/48

CSRLT 000232' 2/40 5/43

CSRRT 000235 2/39 5/47

CSRUP 000233 2/42 5/44

CUSR 000252"' 3/27 3/30 3/37 3/59 4/03 4/11 4/14 4/36
4/41 5/10 5/14 5/15 5/26 5/29 5/50 5/57
6/02

HOME 000216"' 2/22 2/26 5/26

ILS 000000"' 2/14 4/32

INOBC 000001~ 2/07 2/59 3/01 3/1 &€ 4/20

INOBP 000000- 2/06 3/08 3/14

INOCH 000002- 2/08 3/28 3/52 3/58 4/10 4/45 5/04 5/34
5/38 5/49

INOE1 000270' 3/06 6/17

INOE2 000271' 4/27 6/18

INOFB 000040' 2/49

INON 000110' 3/02 3/49

INOPB 000043' 2/55

INOS 000044 2/59

LBYTE 000137 2/14 4/23

LF 000213"' 2/24 5/22

LF1 000127" 4/10 5/23

LFLAG 000264"' 4/08 5/22 6/12

LINK 000251" 3/44 3/54 6/01

M10 000255" 5/11 6/05

M100 000254 4/01 5/48 6/04

NB1 000054 2/51 3/10

NBYTE 000052 3/08 4/21

NLINK 000134’ 4/16 5/08 5/58

NOCH 000135' 2/17 2/1¢& 2/19 2/20 2/21 2/25 2/28 2/30
2/31 2/32 2/33 2/34 2/35 2/36 2/37 2/38
2/41 2/44 4/20 4/38 5/24 6/01

POSTI 000004$X 3/05 4/26

RESTO 000102' 3/33 3/39

RO1 000231' 5/31 5/41

RTI 000003$X 3/42

RUBOU 000220 3/21 5/29

SAV2 000005$X 3/39 3/51 4/23

SAVC 000006$X 3/40 3/50 4124

SCUSR 000253" 4/37 4/40 6/03

SLINK 000106"' 3/44 4/04 4/16 4/52 5/02 5/35 5/39

SPCH 000267" 4/57 5/03 5/19 6/15

TAB 000200" 2/23 5/10

TABC 000266 4/42 4/46 4/51 4/58 5/05 5/17 6/14

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

0001

CES

000000
000001
000002
000003
000004
000005

we

Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve we

wse

167

COUNTED EVENTS SCHEDULER

TASK SCHEDULER MK. V

E. WULFF 29-7-70
MODIFIED 19-APR-71, 6-MAR-, 19-MAR-72

THIS IS A RE-ENTRANT PROGRAM IN TWO SECTIONS.
EACH SECTIONS FORMS A SEPERATE TASK AND MUST BE
SUPPLIED WITH A SEPERATE TCB. THE TWO TASKS
TOGETHER ARE CAPABLE OF SUPPORTING A NUMBER

OF DEVICES SUPPLYING A SERIES OF INTERRUPTS TO
THE COMPUTER. THE FIRST TASK IS CALLED BY A .SVC
s TO ENTER AN EVENT INTO AN EVENT QUEUE. THE
SECOND TASK IS POSTED FROM THE DEVICE SERVICE
ROUTINE ASSOCIATED WITH THE QUEUE WHEN THE EVENT
AT THE HEAD OF THE QUEUE IS DUE. IT THEN LOADS

A COUNT INTO THE DEVICE SERVICE ROUTINE

AND WAITS FOR THIS COUNT TO BE DECREMENTED

TO ZERO. :

THE TWO TASK SHARE A COMMON WORKAREA WHOSE
STARTING POINT MUST BE INITTALISED IN TL7 AND TAC2
OF BOTH TCB'S. THE WORKAREA IS 6 WORDS LONG.

.TITL CES

.ENT CESE, CESP,DUMMY , RETEX
.EXIN .WAIT,.EXIT,.RGET,FREE
.EXTD COMP,PMASK

E

DEFINITIONS FOR SUPPORTING PROGRAMS

EC= 0 s EVENT CONTROL WORD BETWEEN SECTIONS
FRE= 1 sPOINTER TO 1ST ENTRY ON FREE LIST
HD= 2 sPOINTER TO HEAD OF QUEUE

CC= 3 sABSOLUTE ADDRESS OF TCC

TCC= 4 sTEMP CLOCK COUNT

CCP= 5 sPOINTS TO INSTRUCTION WHICH

; COUNTS INTERRUPTS

168

0002 CES

01

02 ; SECTION 1

03

04 ; ENTER AN EVENT INTO AN EVENT QUEUE.

05 ;3 THIS SECTION IS CALLED BY A SUPERVISOR CALL.

06

07 3 CALLING SEQUENCE:

08

09 H .SVC

10 ; (TCB ADDRESS FOR APPROPRIATE DEVICE)

11 H (ECW ADDRESS) OR @(POINTER TO ECW ADDRESS)
12 H (DELAY) OR @(ADDRESS CONTAINING DELAY)

13 ; (NEXT STATEMENT)

14

15 s TIMING STARTS IMMEDIATELY THE CALL IS MADE

16 3 ANY TASK CAN WAIT ON THE COMPLETION OF THE

17 s EVENT, WHICH WILL BE POSTED BY SECTION 2 WHEN

18 ;s THE NUMBER OF JIFFYS CORRESPONDING TO THE

19 ;s DELAY ENTERED IN THIS CALL HAVE OCCURRED.

20

21 ; NOTE:

22 s IF THIS CALL IS REPEATED FOR THE SAME ECW,

23 ;s THE PREVIOUS QUEUE ENTRY IS DELETED, AND THE
24 3 EVENT WILL NOT BE POSTED. ONLY THE LATEST

25 ;s ENTRY WILL BE POSTED.

26

27 ; ENTER A REQUEST FOR 'DELAYED EXECUTION' OF

28 3 A SUBROUTINE.

29

30 3 CALLING SEQUENCE:

31 ; .SVC

32 H @(TCB ADDRESS FOR APPROPRIATE DEVICE)

33 H (ENTRY ADDRESS OF SUBROUTINE) OR @(POINTER TO ...)
34 H (DELAY) OR @(ADDRESS CONTAINING DELAY)

35 ; (NEXT STATEMENT)

36

37 s THE REQUEST IS ENTERED INTO THE DELAY QUEUE FOR
38 ;3 THE APPROPRIATE DEVICE, AND CONTROL RETURNS TO
39 ;3 THE NEXT STATEMENT IMMEDIATELY. WHEN THE DELAY TIME
40 ;3 HAS EXPIRED, THE SUBROUTINE, WHOSE ENTRY POINT ADDRESS
41 s IS GIVEN IN THE 2ND WORD AFTER '.SVC',IS EXECUTED

42 s AT HIGH PRIORITY BY THE SUPERVISOR. THE SUBROUTINE

43 ; SHOULD BE SHORT.

4t

45 ; NOTE:

46 ; ALL ENTRIES FOR SUBROUTINE EXECUTION ARE RETAINED

47 ; AND EXECUTED, EVEN IF A OTHER REQUESTS FOR THE

48 ; SAME SUBROUTINE ARE MADE BEFORE THE FIRST HAS OCCURRED.
49

50 ; NOTE: THE DELAY MUST BE LESS THAN 215 JIFFYS

51 ; IF PLACED IN THE CALL DIRECT, OR LESS THAN

52 ; 216 JIFFYS IF POINTED TO BY AN ADDRESS IN THE
53 ; CALL. NOTE ALSO THAT THE INDIRECT CHAIN FOR THE
54 ; DELAY PROCEEDS ONLY 1 LEVEL, WHEREAS THE CHAIN
55 ; FOR THE ECW ADDRESS PROCEEDS AS LONG AS @'S ARE
56 ; ENCOUNTERED.

57

58 s DESTROYED: AC3 ONLY

0003 CEs

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

00000'011404
00001'011404
00002'035400

00003'031400
00004'151100
00005'031401
00006'102461

00007'031000
00010'151112
00011'000776
00012'145000
00013'127200
00014'044040

00015'035402
00016'175113
00017'165001
00020'025400

00021'034007
00022'041404
00023'013405

00024'054031
00025'035402
00026'021400
00027'106423
00030'000424

00031'021401
00032'112414
00033'000771

«NREL

CESE:

ISZ
ISz
LDA

LDA
MOVL
LDA
CLA

LDA
IFM
JMP
MoV
ADDR
STA

LDA
IFZP
MoV
LDA

LDA
STA
ISz

169

e we Ve e

Ve We Ve e Ve Ve we

INCREMENT RETURN ADRESS
IN CALLING TASK'S TCB
GET CALLING ADDRESS

CALL IDENTIFICATION

BIT 0 -) CARRY

ECW ADDRESS OR POINTER
CLEAR ACO FOR TEMP. CLOCK

EMULATE INDIRECT CHAIN
TEST IF POINTER

YES - TRY AGAIN
PRESERVE BIT O IN AC2
MARK QUEUE ENTRY BIT O
SAVE ECW ADDRESS OR
SUBROUTINE ENTRY ADDRESS

DELAY OR ADDRESS OF DELAY
TEST IF ADDRESS

NO - MOVE DELAY TO AC1

YES - GET DELAY (ONLY 1 LEVEL
OF INDIRECT EMULATION)

WORK AREA ADDRESS IN AC3
CLEAR TEMP. CLOCK

DISCONNECT CLOCK ROUTINE

s CLOCK INTERRUPTS NO LONGER DISTURB THE QUEUE ENTRIES.
s THEY ARE DIVERTED TO LOCATION TCC IN THE WORK AREA.

;s START SCAN WITH PSEUDO EVENT IN WORK AREA,

SCAN:

STA
LDA
LDA
SUBZ
JMP

LDA
IFNE
JMP

Ve Ve Ve Ve Ve Ve Ve Ve Ve

SAVE PREVIOUS ENTRY ADDRESS
GET THIS ENTRY ADDRESS

GET INCREMENT IN ENTRY
SUBTRACT FROM DELAY

ACO) AcCl

ACO(= ACl

GET ECW ADDRESS IN ENTRY

IS THIS THE ECW TO BE INSERTED
NO - PROCEED

170

0004 CES
01
02 ; DELETE THIS ENTRY FROM THE QUEUE
03
04 00034'021400 LDA 0,0,3 ; GET INCREMENT AGAIN
05 00035'107000 ADD 0,1 s RESTORE DELAY TO PREV. ENTRY
06 00036'045401 STA 1,1,3 ; SAVE IN 2ND WORD OF ENTRY
07 00037'027402 LDA 1,@2,3 ; GET NEXT INCREMENT
08 00040'107000 ADD 0,1 ; LENGTHEN TO SPAN DEL. ENTRY
09 00041'047402 STA 1,@2,3 ; STORE IN NEXT ENTRY
10 00042'025401 LDA 1,1,3 ; RESTORE DELAY TO PREV. ENTRY
11
12 00043'030007 LDA 2,7 ; PUT DELETED ENTRY ON FREE LIST
13 00044'021001 LDA 0,FRE,2
14 00045'041400 STA 0,0,3
15 00046'055001 STA 3,FRE,2
16
17 00047'021402 LDA 0,2,3 ; MOVE POINTER TO THIS ENTRY
18 00050'034031 LDA 3,31 3 FROM THIS ENTRY
19 00051'041402 STA 0,2,3 ; TO PREVIOUS ENTRY
20 00052'030040 LDA 2,40 ; ECW ADDRESS AGAIN
21 00053'000752 JMP SCAN+1 ; CONTINUE SCAN
22
23 ; INSERT A NEW ENTRY INTO THE QUEUE. IF ENTRIES ARE
24 3 COINCIDENT, NEW ENTRY IS INSERTED AFTER THE OLD ENTRY.
25
26 00054'124400 INSRT: NEG 1,1 ; INCREMENT FROM NEW TO NEXT
27 00055'045400 STA 1,0,3 ; STORE IN NEXT ENTRY
28 00056'122400 SUB 1,0 ; INCREMENT FROM PREV. ENTRY
29 00057'054021 STA 3,21 3 SAVE POINTER TO NEXT ENTRY
30
31 00060'030007 TRY: LDA 2,7 ; WORK AREA ADDRESS
32 00061'025001 LDA 1,FRE,2 ; TRY TO GET ENTRY FROM LOCAL
33 ; FREE LIST
34 00062'125015 1IFZ 1,1 3 IS IT EMPTY?
35 00063'000433 JMP MORE 3 YES - GET MORE CORE
36 3 NO-PROCEED WITH ENTRY OBTAINED
37 00064'034031 LDA 3,31 ; POINTER TO PREV. ENTRY
38 00065'045402 STA 1,2,3 ; LINK NEW ENTRY TO PREV. ENTRY
39 00066'135000 MOV 1,3 ; POINTER TO NEW ENTRY
40 00067'027001 LDA 1,@FRE,2; RE-LINK FREE LIST
41 00070'045001 STA 1,FRE,2
42
43 00071'041400 STA 0,0,3 ; STORE INCREMENT IN NEW ENTRY
44 00072'024040 LDA 1,40 ; ECW FOR NEW ENTRY
45 00073'045401 STA 1,1,3
46 00074'024021 LDA 1,21 3 POINTER TO NEXT ENTRY
47 0®75'045402 STA 1,2,3
48
49 00076'060 277 INTDS s SECURE THIS SHORT SECTION
50 00077'017005 DSZ @cCP,2 ; CCP BACK TO QUEUE
51 00100'023002 LDA 0,@D,2 ; INCREMENT TO 1ST ENTRY
52 00101'025004 LDA 1,TCC,2 3 CLOCK COUNT DURING SERVICE
53 00102'123000 ADD 1,0 3 ADD TO OBTAIN DIFFERENCE
54 00103'043002 STA 0,@HD,2 ; UPDATE 1ST ENTRY
55
56 00104'100532 NEGZL# 0,0,SZC ; IS NEXT EVENT DUE
57 00105'000406 JIMP FIN ; NO — POSITIVE OR 215

58 ; YES - 0,MINUS BUT NOT 215

0005 CEs

01
02
03
04
05
06

07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

00106'035000
00107'175134
00110'057417

00111'034001%

00112'055000
00113'060177

00114'177777
00115'000663

00116'177777
00117'177777

00120'024030
00121'034414
00122'157000

00123'030007
00124'055001
00125'030411

00126'157000 LINKF:

00127'055775
00130'146426
00131'000775

00132'126460
00133'045775

00134'000724

171

s POST ECW IN FIRST WORD OF WORK AREA TO ACTIVATE SECT.2

FIN:

3 GET MORE CORE

MORE:

00135'177776 M2:

00136'000003

C3:

LDA 3,EC,2
MOVZL# 3,3,SZR ;
STA 3,@TBP, 3;
LDA 3,COMP
STA 3,EC,2
INTEN ;

;
JEXIT ;
JMP CESE ;

«RGET
FREE

LDA
LDA
ADD

LDA
STA
LDA

ADD
STA
SUBZ
JMP

CLA
STA

JMP

-2
3

2,3
3,-3,3
2,1,SEZ
LINKF

we We ve we

s NO NEED TO TEST WAIT COUNT

TEST IF WAITING
YES -~ ACTIVATE TASK

;3 EITHER WAY SET COMPLETION

BIT IN ECW

ENABLE MOMENTARILY TO IMPROVE
LATENCY

SUSPEND THIS TASK UNTIL CALLED
AGAIN

FROM THE MAIN FREE LIST (D.Q.)

GET 1 CELL FROM FREE D.Q.

AC2 CONTAINS ADDRESS

LOC 20 IS DESTROYED

LOC 30 CONTAINS CELL LENGTH
-2

INCREASE CELL SIZE BY USING

2 LINK WORDS. CELL WILL NEVER
BE RETURNED TO FREE D.Q.

LINK TO LOCAL FREE LIST

+3

; NEXT ENTRY
STORE POINTER IN PREV.
IS CELL EXHAUSTED
NO - MAKE ANOTHER

ENTRY

TERMINATE LOCAL FREE LIST
WITH O IN POINTER POSITION
OF LAST ENTRY

TRY AGAIN, NOW WITH SUCCESS

CONSTANTS

0006 CES

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

00137'020021
00140'062077

00141'020002%

00142'062077

00143'034007
00144'031402
00145'023002
00146'025000
00147'123000

00150'0430@

00151'025002
00152'045402

00153'035001
00154'175112
00155'000411

00156'035400
00157'174536
00160'015416
00161'000402
00162'057417

00163'176620
00164'057001
00165'000406

172

; SECTION 2

THE EVENT AT THE HEAD OF THE QUEUE IS NOW

DUE. POST IT, IF THE QUEUE ENTRY IS AN ECW ADDRESS,
OR EXECUTE A SUBROUTINE, IF THE QUEUE ENTRY POINTS
TO A SUBROUTINE. DELETE IT FROM THE QUEUE.

TEST IF THE NEXT EVENT IS DUE AND REPEAT.

IF NOT SET UP A VALUE FOR THE APPROPRIATE DEVICE
TO DECREMENT AND WAIT FOR THE DEVICE TO DECREMENT
THIS VALUE TO ZERO. THE TASK ALSO CIRCULATES

3 DUMMY EVENTS IN THE EVENT QUEUE. THESE ARE
RE-INITIALISED BY CALLING AN EXTRA ROUTINE VIA

THE POINTER 'DUMMY'. THIS RESETS THE COUNT

TO 215 AND PUTS THE ENTRY ON THE VERY END OF THE
EVENT QUEUE, USING A CONSTANT WHICH IS ASSEMBLED
INTO THE 4TH WORD OF DUMMY ENTRIES. DUMMY ENTRIES

3 ARE NOT RETURNED TO A FREE LIST. THE 3 DUMMY ENTRIES
ENSURE THAT THERE IS AT LEAST 1 EVENT WHICH

IS DUE MORE THAN 216 JIFFYS FROM NOW.

Ve Ve We Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve

ve we

THIS TASK MASKS INTERRUPTS FROM ALL DEVICES NORMALLY.
3 (THIS MAY BE RELAXED IN SPECIAL CIRCUMSTANCES BY
SETTING UP A DIFFERENT MASK THAN 177777 IN THE TCB)
IF THIS TASK LOOPS INTERNALLY A NUMBER OF TIMES,
CLOCK INTERRUPTS MIGHT BE MISSED. THUS SELECTED
INTERRUPTS ARE ALLOWED MOMENTARILY. SET UP AN APPRO-
PRIATE MASK IN TL6 OF THE WORK AREA.

-

Ve Ve e we we

MASK: LDA 0,21 ; DEVICE MASK
MSKO 0 ; ALLOW MORE INTERRUPTS
LDA 0,PMASK ; GO BACK TO ORIGINAL MASK
MSKO O ; USUALLY 177777

NEXT: LDA 3,7 ; RESTORE POINTER
LDA 2,HD,3 ; ENTRY ABOUT TO BE FREED
LDA 0,@2,2 ; NEXT INCREMENT
LDA 1,0,2 3 THIS INCREMENT (0 OR -VE)
ADD 1,0 ; ACTUAL INCREMENT FROM NOW
STA 0,@2,2 ; STORE IN NEXT ENTRY
LDA 1,2,2 ; MAKE NEXT ENTRY HEAD OF QUEUE
STA 1,HD,3 3 ENTRY CUT OFF
LDA 3,1,2 ; ADDRESS IN THIS ENTRY
IFM 3,3 ; TEST IF ECW
JMP EXEC ; NO - ECECUTE SUBROUTINE

s POST EVENT CONTROL WORD IN THIS QUEUE ENTRY

LDA 3,0,3 3 EVENT CONTROL WORD

NEGZL# 3,3,SEZ ; TEST ECW

DSZ TWC,3 3 TEST WAIT COUNT

JMP 2 ; NOT WAITING. ONLY POST
STA 3,@TBP,3; ACTIVATE TASK IN ECW
SUBZR 3,3 ; 100000

STA 3,@1,2 ; SET COMPLETION BIT IN ECW

JMP ATT

173

0007 CES
01
02 s EXECUTE AN EXTRA SUBROUTINE
03
04 00166'040031 EXEC: STA 0,31 3 SAVE ACC'S
05 00167'050041 STA 2,41
06 00170'005400 JSR 0,3 s ENTER EXTRA ROUTINE
07
08 00171'030041 RETEX: LDA 2,41 ; RETURN HERE
09 00172'020031 LDA 0,31 s RESTORE ACC'S
10
11 00173'034007 ATT: LDA 3,7
12 00174'025401 LDA 1,FRE,3 ; ATTACH ENTRY TO
13 00175'045000 STA 1,0,2 ; LOCAL FREE LIST
14 00176'051401 STA 2,FRE, 3
15
16 00177'100533 TEST2: NEGZL# 0,0,SNC ; IS NEXT EVENT DUE
17 00200'000737 JMP MASK s YES - 0, -VE BUT NOT 215
18
19 00201'177777 JWAIT ;s NO - WAIT FOR CLOCK ROUTINE
20 00202'100007 @7 3 TO DECREMENT THE HEAD OF THE
21 00203'176460 CESP: SUBC 3,3 3 QUEUE TO ZERO.
22 00204'056007 STA 3,@7 3 CLEAR ECW
23 00205'000736 JMP NEXT
24
25 s RE-INSERT DUMMY EVENT WITH AN INCREMENT OF
26 3 215 (100000) JIFFYS AFTER PREVIOUS DUMMY.
27
28 00206'025003 RDUM: LDA 1,3,2 ; POINTER IN 4TH WORD
29 00207'045002 STA 1,2,2 3 TO CLOSE CIRCLE
30 00210'126620 SUBZR 1,1 ; 215
31 00211'045000 STA 1,0,2 s SET INCREMENT
32 00212'000765 JMP TEST2 3 DO NOT PUT ON FREE
33
34 100206 'DUMMY= @RDUM
35
36 ; FORMAT OF DUMMY ENTRIES:
37 R .ENT DUMMY
38
39 s DUM1: 100000
40 5 DUMMY
41 ; DUM2
42 R DUM2
43
44 s DUM2: 100000
45 ; DUMMY
46 3 DUM3
47 3 DUM3
48
49 3 DUM3: 100000
50 ; DUMMY
51 3 DUM1
52 H DUM1
53
54 .END
0009 CES

ATT 000173"' 6/59 8/11

c3
cC
CCp
CESE
CESP
COMP
DUMMY
EC
EXEC
FIN
FRE

FREE

INSRT
LINKF
M2
MASK
MORE
NEXT
PMASK
RDUM
RETEX
SCAN
TCC

TEST2

TRY

«EXIT
«RGET
<WAIT

000136"'
000003
000005
000000"'
000203'
0000018X
100206
000000
000166"'
000113'
000001

000117'X
000002
000054
000126'
000135"'
000137'
000116"'
000143"
000002$X
000206"'
000171'
000024'
000004
000177'
000060"'
000114'X
000116'X
000201'X

5/26
1/38
1/40
3/04
8/21
5/07
8/34
1/35
6/47
4/57
1/36
8/14
5/18
1/37
3/39
5/28
5/21
6/30
4/35
6/35
6/32
8/28
8/08
3/35
1/39
8/16
4/31
5/12
5/17
8/19

174

5/39

3/28
5/13

5/04
8/04
5/10
4/13

4/51
4/26
5/31
5/38
8/17
5/17
8/23

8/34

3/43
3/27
8/32
5/36

4/50

5/08

4/15

4/54

4/21
4/52

4/32

6/36

4/40

6/43

4/41

5/25

8/12

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56

57
58

59

0001 TIM

we

175

ABSOLUTE TIME IN JIFFIES

; E. WULFF 23-APR-71

we

we we we we we

we Ve we

Ve Ve Ve Ve Ve Ve Ve Ve Ve

we

SUBROUTINE WHICH RETURNS THE DOUBLE PRECISION CLOCK-
COUNT IN ACO & ACl. IT IS ESSENTIAL TO USE THIS
ROUTINE TO FETCH THE HIGH ORDER TIME, BECAUSE CLOCK
INTERRUPTS ARE INHIBITED WHILE THE VALUES ARE LOADED.

IF THE LOW ORDER WORD ONLY IS REQUIRED, THIS MAY BE
FETCHED WITH A 'LDA X,TIML'.

CALLING SEQUENCE:
.TIM OR JSR Q@TIM
(NEXT STATEMENT)

PRECAUTION: CALL ONLY IN USER PROGRAMS WHEN
INTERRUPT IS ON.

OUTPUT:
ACO HIGH ORDER TIME
ACl LOW ORDER TIME
TOGETHER THESE ARE AN UNSIGNED DOUBLE PREC.
VALUE WHICH REPRESENT THE TIME MOD. 232
SINCE INITIALISATION. THE VALUE IS IN JIFFIES
AT THE CURRENT CLOCK SPEED. THE OUTPUT IS
MAINLY USED TO COMPUTE THE TIME DIFFERENCE
BETWEEN TWO EVENTS.

non

DESTROYED: ACO0,AC1l AND AC3

L.TITL TIM

«ENT TIM,.TIM
. EXTD TIML

«ZREL

00000-000000"'TIM: RTIM
. TIM= JSR @TIM s DEFINE CALLING MNEMONIC

006000~

.NREL

00000'060277 RTIM: INTDS s SECURE NEXT 2 STATEMENTS

00001'020404

00002'024001$%
100003'060177
00004'001400

LDA 0,TIMH ; HIGH ORDER
LDA 1,TIML ; LOW ORDER
INTEN ; RELEASE
JMP 0,3 ; RETURN

s DEFINE PLACE OCCUPIED IN 'DT'

NOTE
THIS PROGRAM MUST ALWAYS RBE LOADED IMMEDIATELY
BEFORE 'DT', SO THAT TIMH IS CORRECTLY DEFINED.

176

0002 TIM
01 .END

0003 TIM
RTIM 000000"' 1/43 1/48
TIM 000000~ 1/43 1/44
TIMH 000005" 1/49 1/54

TIML 000001$X 1/50
.TIM 006000~ 1/44

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
bt
45
46
47
48
49
50
51
52
53
54
55
56

0001 DELAY

we we

we

177

DELAY TIMER

TASK SCHEDULER MK. V

; E. WULFF 21-APR-71
; MODIFIED 14-MAR~72 4-0CT-72

.TITL

.ENT
.ENT
. EXTD
. EXTN
«EXTN

Ve Ve Ve Ve Ve We Ve Ve Vo we

we

Ve we e

. ZREL
00000-000000 TIML:

.NREL
00000'000000 TIMH:
00001'060114 RTCS:
00002'010000~-
00003'000403

00004'010774
00005'000401

DELAY

RTCS,TCBC,TCBD,DELAY ,DELEX, TIMH, TIML
TCBE, TDTIM, TDSEM, RTCW, FREE
RTI,POSTI,C377,COPY

CESE, CESP ,DUMMY, . SVC,LOWER, RAISE
.WAIT,.DQIN,CL,RETEX,NC,END

REAL TIME CLOCK INTERRUPT SERVICE.

MAINTAIN A DOUBLE PRECISION UNSIGNED CLOCK COUNT. THE
LOW ORDER WORD IS IN LOCATION "TIML'" ON PAGE ZERO.

THE HIGH ORDER WORD IS IN LOCATION "TIMH" ON THIS PAGE.
IT SHOULD ONLY BE OBTAINED BY A CALL TO SUBROUTINE
"TIM" WHICH RETURNS LOW ORDER TIME IN ACO AND HIGH
ORDER IN ACl. (SEE SEPERATE ASSEMBLY)

NEVER MODIFY EITHER LOCATION, SINCE OTHER TASKS MAY
ALSO WANT TO USE THEM.

TIME IS ACCURATE TO THE NEAREST JIFFY.

ALSO SUPPORT THE CURRENT EVENT SCHEDULER FOR THE REAL
TIME CLOCK. A CLOCK WORK AREA (CWA), 3 DUMMY EVENTS
AND TASK CONTROL BLOCKS FOR SECTIONS 1 & 2 OF THE
CURRENT EVENT SCHEDULER ARE SET UP IN THIS ASSEMBLY.

NIOS RTC

ISZ TIML
JMP C.INS
ISZ TIMH
JMP C.INS

SET BUSY FLAG FOR NEXT CYCLE
ABSOLUTE TIME (LOW ORDER)

ve

we

HIGH ORDER
IGNORE FURTHER OVERFLOW

we we

s ACCUMULATE COUNT ON THE HEAD OF THE EVENT QUEUE

00006'016430 C.INS:
00007'0020015$

00010'006002$
00011'000034"'

DSZ @CWA+2 ; THIS INSTRUCTION IS MODIFIED
JMP @RTI ;3 COUNT NOT ZERO
JSR @POSTI COUNT IS ZERO

CWA POST EVENT DESPATCHER

we wo

178

0002 DELAY
01
02 s ORIGINAL OF CLOCK WORK AREA
03
04 00012'000102'OCWA: CPOST ; SECTION 2 EVENT CONTROL WORD (WAITING)
05 00013'000000 0 3 FREE - INITIALLY EMPTY
06 00014'000042' DUM1 3 HD - POINTS TO FIRST DUMMY EVENT
07 00015'000040"' CWA+4 3 CC - POINTS TO TCC
08 00016'000000 0 3 TCC - ACCUMULATES CLOCK COUNT WHILE
09 s SECTION 2 IS ACTIVE
10 00017'000006' C.INS 3 CCP - POINTS TO DSZ INSTRUCTION
11
12 3 ORIGINAL OF 3 DUMMY EVENT ENTRIES.
13
14 00020'100000 100000 ; INCREMENT
15 00021'177777 DUMMY 3 CALL TO SPECIAL ROUTINE
16 00022'000046" DUM2 3 POINT TO NEXT DUMMY INITIALLY
17 00023'000046" DUM2 3 CONSTANT VALUE
18
19 00024'100000 100000
20 00025'000021' DUMMY
21 00026'000052"' DUM3
22 00027'000052"' DUM3
23
24 00030'100000 100000
25 00031'000025"' DUMMY
26 00032'000042' DUM1 3 CLOSE THE CIRCLE
27 00033'000042"' DUM1
28
29 ; WORKING COPIES
30
31 000006 CWA: .BLK 6
32 000004 DUM1: .BLK 4
33 000004 DUM2: .BLK 4
34 000004 DUM3: .BLK 4
35
36 ; TASK CONTROL BLOCK FOR SECTION 1 OF CES
37
38 000020 TCBC: .BLK 20
39 00076'00601 1B4+1B5+1B7+1B15; TASK INITIALLY SUSPENDED (B15)
40 00077'177777 CESE s PC POINTS TO START OF SECTION 1
41 00100'000003 3 3 MASK TTI, TTO
42 00101'000034" CWA 3 L7 - CLOCK WORK AREA
43
44 000056 'DELAY= TCBC ; NAME FOR ENTERING EVENT IN TIME QUEUE
45 100056 'DELEX= @DELAY ; NAME FOR ENTERING REQEST FOR EXEC.
46
47 3 TASK CONTROL BLOCK FOR SECTION 2 OF CES
48
49 000020 TCBD: .BLK 20
50 00122'007413 1B4+1B5+1B6+1B7+1B12+1B14+1B15 ; INITIALLY SUSPENDED
51 00123'177777 CESP 3 POINTS TO START OF SECTION 2
52 00124'177777 -1 s MASK ALL DEVICES
53 00125'000003 3 3 L6 - TEMP. MASK WHEN LOOPING
54 00126'000034"' CWA ;5 L7 - CLOCK WORK AREA
55 00127'177777 RETEX ; L40 - RETURN AFTER EXEC.
56 00130'000001 1 ; WC
57

58

000102'CPOST= TCBD

0003 DELAY

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

179

3 TASK CONTROL BLOCK FOR 1 MIN. LOOP

000020 TCBE:

00151'006000
00152'000163"
00153'177773

000002
000005 FREE:

000003 RICSP=

.BLK 20

1B4+1B5 ; ICW

STCLK

;3 PC

~1-1B13 ; MASK ALL DEVICES EXCEPT RTC

.BLK 2

LIST D.Q. CONTROL BLOCK

s LEFT & RIGHT LINK

.BLK 5 ; SEMAPHORES & CELL LENGTH

3

3 1 KHZ CLOCK SPEED

;s INITIALISATION PROGRAM

00163'006004$STCLK:
00164'000012"'
00165'000034"'
00166'000022

00167'177777
00170'000156"'
00171'177777
00172'177777
00173'177777

00174'020451
00175'061114

00176'102520
00177'040441
00200'102460
00201'040440

JSR @COPY ; COPY CLOCK WORK AREA
OCWA ; AND DUMMY ENTRIES
CWA ; ADDRESS OF COPY
6+btbth ; NO. OF WORDS

.DQIN ; SET UP THE FREE D.Q.

FREE

CL ; CELL LENGTH IN BYTES

NC ; NUMBER OF CELLS

END ; BEGINNING OF UNUSED STORAGE
LDA 0,RTCW ; SET CLOCK SPEED

DOAS 0,RTC ; START CLOCK

SUBZL 0,0

STA 0,TDSEM ; INITIALISE THE SEMAPHORE
SUBC 0,0

STA 0, TDSEM+1

0004 DELAY

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

37
38

00202'176460 TDLOO:

00203'054437

00204'177777

00205'000056"
00206'000242"'
00207'100246"

00210'177777
00211'000240"

00212'020431
00213'040431

00214'004447
00215'000073

00216'004445
00217'000027

00220'004443
00221'100247"'

00222'004441
00223'000414

00224'004437
00225'000143

00226'177777 COMPL:

00227'000240"

00230'177777
00231'000242"'
00232'000750

180

ONE MINUTE LOOP

SUBC 3,3
STA 3,T

DECW

.
H]

CLEAR THE ECW

.SVC s ENTER A 1 MIN. DELAY

DELAY
TDECW
@TCNT

LOWER s SECURE THE TIME LOCATIONS

ve

ve

ve

e

TDSEM
LDA 0, TDADR
STA 0, TDPNT
JSR TDINC
0.B7+59.

JSR TDINC
0.B7+23.

JSR TDINC
@DAY

JSR TDINC
1.B7+12.

JSR TDINC
0.B7+99,

RAISE ; RELEASE
TDSEM

JWAIT

TDECW

JMP TDLOO

s FROM MODIFICATION DURING INCREMENT

ADDRESS OF TIME LOC. TABLE

INITIALISE POINTER

INCREMENT MINUTES

INCREMENT HOURS

INCREMENT DAYS

VIA A TABLE

INCREMENT MONTHS

INCREMENT YEARS

TIME LOCATIONS

5 WAIT FOR NEXT 1 MIN.

0005 DELAY

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

00233'000000
00234'000000
00235'000001
00236'000006
00237'000110

00240'000001
00241'000000
00242'000000

00243'000232"

000001
00245'000003

000000
00246'165140

00247'000437
00250'100434
00251'000437
00252'000436
00253'000437
00254'000436
00255'000437
00256'000437
00257'000436
00260'000437
00261'000436
00262'000437

TDTIM:

TDSEM:

TDECW:
TDADR:
TDPNT:
RTCW:
TCNT:
.IFE

. ENDC
.IFE

.ENDC
.IFE

.ENDC
.IFE

.ENDC
; TABLE

DAY :

1.B7+31.
@1.B7+28
1.B7+31.
1.B7+30.
1.B7+31.
1.B7+30.
1.B7+31.
1.B7+31.
1.B7+30.
1.B7+31.
1.B7+30.
1.B7+31.

181

TDTIM-1
.BLK 1
RTCSP

RTCSP
3000.

RTCSP-1 ;

600.

RTCSP-2
6000.

RTCSP~3 ;

60000.

OF DAYS

Ve Ve we Ve we

H

we

1

TIME LOCATIONS - MIN.
HOUR

DAY

MONTH

YEAR

SEMAPHORE

EVENT CONTROL WORD

JIFFIES IN 1 MIN.
50 HZ

10 HZ

100 HZ

1 KHZ

IN THE MONTH'S OF THE YEAR

Ve Ve Ve Ve Ve Ve Ve We Ve Ve Ve Ve

JANUARY
FEBRUARY (ALLOWS FOR LEAP YEAR)
MARCH
APRIL

MAY

JUNE

JULY
AUGUST
SEPTEMBER
OCTOBER
NOVEMBER
DECEMBER

0006 DELAY

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Cc377
C774.

00263'010761
00264'031400
00265'151113
00266'000413

00267'024747
00270'133000
00271'031377
00272'151113
00273'000406

00274'024743
00275'125203
00276'125202
00277'000402
00300'151400

CALL.

Ve Ve Ve Ve We Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve

TDINC:

00301'024003$TDI1:

00302'147400
00303'012741
00304'022740
00305'106432
00306'000720

00307'024404
00310'147700
00311'046733
00312'001401

00313'077400

0007 DELAY

000313'

000003$X

C774.:

«END

6/35
6/42

182

SUBROUTINE TO INCREMENT A WORD POINTED

TO BY "TDPNT'+1 ACCORDING TO A MODULUS STORED
IN BITS 8-15 OF THE WORD AFTER THE CALL

AND RESTORED AFTER OVERFLOW TO A VALUE

STORED IN BIT 1 TO 7 OF THE WORD AFTER THE

IF BIT O OF THE WORD AFTER THE CALL IS 1

ISZ TDPNT 3
LDA 2,0,3 H
IFZP 2,2
JMP TDI1 R
LDA 1,TDTIM+3;
ADD 1,2 3
LDA 2,-1,2
IFZP 2,2 H
JMP TDI1 ;
LDA 1,TDTIM}4;
MOVR 1,1,SNC
MOVR 1,1,SZC ;
JMP TDI1 3
INC 2,2 ;
LDA 1,C377
AND 2,1 K
ISz @TDPNT ;
LDA 0,@TDPNT
IFLE 0,1 3
JMP COMPL H
LDA 1,C774.
ANDS 2,1 3
STA 1,@TDPNT;
JMP 1,3 5
H
77400
6/48

BITS 1 TO 15 ARE USED AS A BASE ADDRESS

TO COMPUTE AN ADDRESS IN THE DAYS OF THE
MONTH TABLE. THIS WORD IS USED TO OBTAIN
A MODULUS AND RESTORE VALUE.

IF NO OVERFLOW OCCURS, THE ROUTINE RETURNS
TO A LOCATION "COMPL'". NO INCREMENTING OF
HIGHER VALUES ARE REQUIRED. IF OVERFLOW
OCCURS THE ROUTINE RETURNS TO THE 2ND WORD
AFTER THE CALL.

INCREMENT THE POINTER
WORD AFTER THE CALL

USE WORD AS IS

MONTH VALUE

COMPUTE ADDRESS IN DAY OF
MONTH TABLE, GET WORD
CHECK IF FEBRUARY

NO

YEAR

CHECK IF LEAP YEAR
NO
YES, MAKE FEB. 29 DAYS

MODULUS~-1+RESET
INCREMENT THE VALUE

HAS IT OVERFLOWN
YES - NO FURTHER WORK

77400 - MASK FOR BIT 1-7
RESET VALUE O OR 1
RESET THE VALUE

RETURN TO ALLOW NEXT
VALUE TO BE INCREMENTED

CESE
CESP
CL
COMPL
COPY
CPOST
CWA
C.INS
DAY
DELAY
DELEX
DUM1
DUM2
DUM3
DUMMY
END
FREE
LOWER
NC
OCWA
POSTI
RAISE
RETEX
RTCS
RTCSP
RTCW
RTI
STCLK
TCBC
TCBD
TCBE
TCNT
TDADR
TDECW
TDI1
TDINC
TDLOO
TDPNT
TDSEM
TDTIM
TIMH
TIML
.DQIN
.SVC
JWAIT

000077'X
000123'X
000171'X
000226"'
0000048$X
000102'
000034
000006'
000247'
000056
100056
000042
000046"'
000052"'
000031'X
000173'X
000156"'
000210'X
000172'X
000012'
0000028X
000226'X
000127'X
000001"'
000003
000245"
0000018X
000163
000056
000102'
000131'
000246"'
000243"
000242"'
000301"
000263"'
000202'
000244"
000240'
000233'
000000"'
000000-
000167'X
000204'X

000230'X

2/40
2/51
3/26
4/33
3/19
2/04
1/52
1/46
4/25
2/44
2/45
2/06
2/16
2/21
2/15
3/28
3/13
4/12
3/27
2/04
1/55
4/33
2/55
1/44
3/15
3/30
1/53
3/07
2/38
2/49
3/04
4/10
4/15
4/05
6/21
4/18
4/04
4/16
3/34
5/02
1/42
1/38
3/24
4/07
4/36

183

6/40

2/58
1/56
1/48
5/30
2/45

2/26
2/17
2/22
2/20

3/25

3/20

5/13
5/13

3/19
2/44
2/58

5/14
5/11
4/09
6/27
4/21
4/38
5/12
3/36
5/11
1/47
1/45

2/07
1/52

4/08

2/27
2/33
2/34
2/25

5/15

4/37
6/32
4/24

6/18
4/13
6/23

2/31
2/10

2/32

5/18

5/10
6/35
4/27

6/37
4/34
6/29

2/42 2/54
5/21 5/24
4/30 6/18
6/38 6/44
5/08

3/21

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57

58
59

0001 CoPY

00000-000000"'
00001-000004"

00000'025400
00001'031401
00002'175400
00003'175400

00004'021400
00005'100000
00006'175400
00007'054006
00010'135000

00011'101405
00012'002006

00013'025400
00014'045000
00015'175400

00016'151400
00017'000772

184

;s COPY AREAS OF CORE

5 XXX

; E. WULFF 16-JULY-71

3 CALLING SEQUENCE:

we Ve Ve Ve we

s OR

Ve Ve we Ve we

JSR @cory

(ADDRESS OF SOURCE BLOCK)
(ADDRESS OF COPY BLOCK)
(NUMBER OF WORDS TO BE COPIED)
(NEXT STATEMENT)

JSR @COPA

(NUMBER OF WORDS TO BE COPIED)

(NEXT STATEMENT)

AC1 MUST CONTAIN ADDRESS OF SOURCE BLOCK
AC2 MUST CONTAIN ADDRESS OF COPY BLOCK

; MODIFIED: ALL ACC., CARRY AND L6
; UNCHANGED: L7

.TITL

«ENT

«ZREL

COPY:
COPA:

.NREL

RCOPY:

RCOPA:

LOOP:

«END

COPY

COPY , COPA

RCOPY
RCOPA

LDA 1
LDA 2
INC 3
INC 3

,3 ; ADDRESS OF SOURCE
,3 3 ADDRESS OF COPY

LDA 0,0
COM 0,0 ; BLOCK COUNT
INC 3,3
STA 3,6

1,3

MoV

; SAVE RETURN

INC 0,0,SNR ; STEP COUNTER
JMP @6 ; RETURN

LDA
STA

1,0,3 ; SOURCE WORD
1 2
INC 3
2
L

; STORE IN COPY

INC
JMP

0002

COPA
COPY
LOOP
RCOPA
RCOPY

COPY

000001~
000000~
000011"'
000004 "'
000000'

1/35
1/34
1/50
1/35
1/34

185

1/57
1/44
1/39

186

0002 DBI1.5
01
02 : kkkhhhkkhhhhiik
03 3 % *
04 H * DEBUG 1.5 *
05 3 * *
06 3 khkhhhhhhiihii®k
07
08 ;s E. WULFF 25-JUN-72
09 ; VERS. 18 3-0CT-72
10
11 .TITL DBL.5
12
13 . ENT DB1.5
14 000001 .IFN T
15 . ENT TCBW,PTPS
16 .EXTN .WAIT,TTIEC,TTOEl,LOWER,RAISE,SEMDT
17 LEXTD RTI
18 .ENDC
19
20 .NREL
21
22 s PUNCH INTERRUPT SERVICE FOR TASK MODE.
23
24 000001 JIFN T
25
26 00000'060213 PTPS: NIOC PTP 3 CLEAR DONE FLAG
27 00001'002001$% JMP @RTI s TEST BUSY IN TASK
28 . ENDC
29
30 s PUNCH BINARY TAPE.
31
32 00002'000020 C20: 20
33
34 00003'015562 PS: DSZ AFLAG-SAVO0, 3
35 00004'000506 JMP PROC s PROCEED
36
37 00005'151100 MOVL 2,2
38 00006'151220 MOVZR 2,2 3 CLEAR BIT O
39 00007'050525 STA 2,JFLAG ; FINAL ADDRESS
40 00010'031564 LDA 2,SADR-SAVO0,3
41 00011'007415 JSR @APUT-SAVO0,3 s ECHO
42
43 00012'145000 BLL: MOV 2,1
44 00013'020521 LDA 0,JFLAG ; FINAL ADDRESS
45 00014'106022 ADCZ 0,1,SZC ; REMAINDER
46 00015'002516 JMP @AGO ; FINISHED
47
48 00016'034764 LDA 3,C20 ; BLOCK SIZE
49 00017'137033 ADDZ# 1,3,SNC
50 00020'164400 NEG 3,1 3 LIMIT 20 WORDS
51 00021'044510 STA 1,RELAD ; ORIGINAL START NOT NEEDED
52 00022'121020 MOVZ 1,0
53 00023'004425 JSR PW s PUNCH WORD COUNT
54 00024'141000 MoV 2,0
55 00025'004423 JSR PW s PUNCH ADDRESS
56 00026'120400 NEG 1,0 ; INITIAL CHECKSUM
57 00027'142400 SUB 2,0 ;s TAKE OUT ADDRESS

0003 DBI1.5

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

00030'035000
00031'162400
00032'151400
00033'125444
00034'000774
00035'004413
00036'024473
00037'133040

00040'021000
00041'004407
00042'151400
00043'125404
00044'000774

00045'102440
00046'004402
00047'000743

00050'061113
00051'063513
00052'000777
00053'101362
00054'000774
00055'001400

00056'002017

187

s COMPUTE THE CHECKSUM

CSL:

PLP:

LDA
SUB
INC
INCO
JMP
JSR
LDA
ADDO

LDA
JSR
INC
INC
JMP

SUBO
JSR
JMP

0,0
Pw
BLL

Ve Ve Ve we

we

.
H

COMPUTE THE CHECKSUM
PUNCH CHECKSUM

BLOCK LENGTH AGAIN
RESTORE START OF BLOCK

PUNCH VALUE

AC2 POINTS TO START OF

NEXT BLOCK

2 NULL BYTES

s PUNCH A 16 BIT WORD IF CARRY = 0
3 (8BITS IF CARRY = 1)

PW:

Cl1400:

BRINS:

00057'000723"ABRA:

00060'000367"'

ATTOF:

00061'000362"'ASAV:

00062'000377
00063'060000

00064 '000000

00065'000000
000001

C377:
C60K:
INTFL:
BPN1:

. IFN

00066'000562"'ATFLG:

00067 '000000

GFLAG:
.ENDC

DOAS
SKPBZ
JMP
MOVCS
JMP

0

0,PTP
PTP

1
0,0,SZC
PW

0,3

@LINK

we Vo

.
E]

H

PUNCH 1 BYTE
DB1.5 MUST BE LOW PRIORITY

PUNCH 2ND BYTE

s RETURN

188

0004 DBL.5

01

02 ; PUNCH END BLOCK AND TRAILER (10")

03 ; ENTER WITH CARRY = 0

04

05 00070'015563 ES: DSZ BFLAG-SAVO, 3

06 00071'145102 MOVL 2,1,SZC

07 00072'131260 MOVCR 1,2 ; 100000 IF BFLAG = 1

08 00073'025720 LDA 1,M60-SAV0,3 ; TRAILER LENGTH
09 00074'007415 JSR @APUT-SAVO, 3

10 00075'102520 SUBZL 0,0 ; ACO = 1, CARRY = 0

11 00076'004752 JSR PW ; PUNCH 1

12 00077'141020 MOVZ 2,0

13 00100'004750 JSR PW ; PUNCH ADDRESS OR 100000
14 00101'140021 COMZ 2,0,SKP ; CHECKSUM

15

16 00102'102440 FLP: SUBO 0,0 ; NULL

17 00103'004745 JSR PW ;s PUNCH CHECKSUM OR NULL
18 00104'125404 INC 1,1,SZR

19 00105'000775 JMP FLP

20 00106'002425 JMP @AGO0 3 FINISHED

21

22 ; PUNCH 10" LEADER

23

24 00107'025720 FS: LDA 1,M60-SAV0,3 ; LEADER LENGTH
25 00110'007415 JSR @APUT-SAVO, 3

26 00111'000771 JMP FLP

189

- 25

0005 DB1.5

01

02 s PROCEED FROM A BREAKPOINT.

03 ; IF THE SYSTEM DID NOT ENTER VIA A BREAKPOINT

04 ; OR IF DEBUG IS IN TASK MODE IT IS NOT

05 3 POSSIBLE TO PROCEED.

06

07 00112'024571 PROC: LDA 1,BPN

08 00113'125014 IFN 1,1

09 00114'001443 JMP GO-SAVO0,3

10

11 00115'151015 IFZ 2,2

12 00116'151400 INC 2,2 s PROCEED COUNT AT LEAST 1
13 00117'051411 STA 2,PRCNT-SAVO, 3 ,

14 00120'007415 JSR @APUT-SAVO0,3 s ECHO NOW

15 00121'012737 ISZ @ATTOF

16 00122'060211 NIOC TTO

17 00123'020733 LDA 0,BRINS ; MOST LIKELY PROCEED INSTR.
18 00124'032733 LDA 2,@ABRA ; BRADR

19 00125'024410 LDA 1,PRADR

20 00126'146414 IFNE 2,1

21 00127'022406 LDA 0,@PRADR; BREAK POINT HAS MOVED

22 00130'000464 JMP EMI

23

24 3 CONSTANTS AND ADDRESSES

26 000017 LINK= 17

27 00131'000000 RELAD: O s '"RELAD MUST 4 WORDS FROM 'PRADR'
28 00132'004000 C4K: 4000

29 00133'000425'AGO: GO

30 00134'000000 JFLAG: O
31 00135'000000 PRADR: O

32

33 s RUN SERVICE

34

35 GS:

36 000001 JIFN T

37 00136'026730 LDA 1,Q@ATFLG

38 00137'044730 STA 1,GFLAG ; STORE TASK STATE
39 . ENDC

40 00140'024772 LDA 1,C4K 3 "JSR'

41 00141'015563 RS: DSZ BFLAG-SAVO0,3

42 00142'000402 JMP +2 ;3 AClL = 0 FOR 'R' 'JMP'
43 00143'031406 LDA 2,L0C-SAVO0,3 3 STORED START LOCATION
44 00144'007415 JSR @APUT~SAVO0, 3

45 00145'006537 JSR @ACRLF

46 00146'012712 1Sz @ATTOF

47 00147'060211 NIOC TTO

48 00150'004472 JSR Rl

49

50 s RETURN AFTER SUBROUTINE EXECUTION

51

52 000001 LIFN T

53 00151'054760 STA 3,RELAD

54 00152'034715 LDA 3,GFLAG ; RESTORE TASK STATE
55 00153'056713 STA 3,@ATFLG

56 00154'054760 STA 3,JFLAG

57 00155'034754 LDA 3,RELAD ; KEEP AC3

58 . ENDC

0006 DBI1.5

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

00156'063477
00157'010705
00160'060277
00161'010704

00162'063477
00163'010701
00164'060277

00165'040575
00166'044575
00167'050575
00170'054575
00171'176660
00172'020672
00173'030672
00174142000
00175'116400
00176'054570
00177'050504
00200'176460
00201'054663
00202'054663

000001
00203'010731
00204'000402
00205'002726

00206'026651
00207'020647
00210'044725

00211'014562
00212'151014
00213'000567

Ve Ve Ve Ve Ve Ve We Ve

DB1.5:

190

USE THIS ORGANISATION OF BREAK POINT ENTRY.

A BREAK MAY OCCUR IN A TASK AND THE TASK MAY

BE INTERRUPTED BEFORE 'INTDS' IS EXECUTED. THE
SAME BREAK POINT MAY THEN BE EXECUTED IN ANOTHER
TASK WHICH HAS DIFFERENT STATUS. THUS IT IS
IMPORTANT NOT TO MODIFY ANY WORDS IF INTERRUPT
IS ON, BEFORE IT IS DISENABLED. THE SAME APPLIES

TO MULTIPLE BREAKPOINTS.

SKPBN
ISz
INTDS
ISz

SKPBN
ISZ
INTDS

STA
STA
STA
STA
CLAR
LDA
LDA
ADC
SUB
STA
STA
CLA
STA
STA

IFN T
ISz
JMP
JMP

.ENDC

LDA
LDA
STA

DSZ
IFN
JMP

CPU
INTFL

BPN1

CPU
INTFL

0,SAV0
1,SAV1
2,SAV2

1,@ABRA
0,BRINS
1,PRADR

PRCNT
2,2
BREAK

H

H

]

ve we we

wve

we we e

START HERE MANUALLY
INTERRUPT FLAG

s TEMP. BREAK COUNTER

; BREAK ENTRY

SAVE ACCUMULATORS

CARRY -) BIT O

1 IF ION, O IF IOF
BIT O = CARRY, BIT 15 = INT
0 = BREAK ENTRY, 1 = START

TEST IF SUBR. RETURN

TASK MODE

CURRENT ADDRESS
AND INSTRUCTION
SAVE FOR PROCEED

PROCEED COUNTER
TEST IF START ENTRY
START OR PRCNT = 0O

0007 DBI.5

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4t
45
46
47

00214'010721
00215'034646
00216'030637
00217'116032

00220'113705
00221'000425

00222'034637
00223'157000
00224'151234
00225'025400
00226'030634
00227'155620
00230'113400
00231'157524
00232'172400
00233'133100
00234'024552
00235"134400
00236'107420
00237'137414
00240'166420
00241'151201
00242'054673
00243'050666
00244020435
00245'123000

00246'024664
00247'134520
00250'117424
00251'000405

00252'034663
00253'107404
00254'054511
00255"122420

00256'010657
00257'176200
00260'054654
00261'040414

191

; EMULATED EXECUTION OF THE BREAK INSTRUCTION.
; PROCEED ADDRESS IN ACI,

EMI:

Rl:

NOTX:

NOTJ:

ISz
LDA
LDA
IFLT

ANDS
JMP

LDA
ADD
MOVZR#
LDA
LDA
INCZR
AND
ANDZL
SUB
ADDL
LDA
NEG
ANDZ
AND#
SUBZ
MOVR
STA
STA
LDA
ADD

LDA
NEGZL
ANDZ
JMP

LDA
AND
STA
SUBZ

ISz
ADCR
STA
STA

PRADR
3,C60K
2,C1400
0,3

0,2,SNR
NOTX

=
<

We v
~Nwn
~ N

CS

—
~
o
~

-
72}
N
=

Y OV VUV VYW Y VYV VW VY VvV VY VvV VY VvV W v

NWFRWAONMNDNMNDWNWOON WP
A J
m
N
=

HFOPNWNWEFEOEFMEMEREWNONNEDNDDNDW
v
-]
=1 -
£ E %
BRR

oQn
g bt
=
s

v v v

[
Q
=~
~

b

P
-
w

0,3,SZR
NOTJ

3,PRADR
0,1,SZR
3,SAV3
1,0

PRADR
3,3
3,JFLAG
0,PRINS

we we we ve Vo

ve

Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve

we

Ve Ve Ve Ve

we Ve we Ve

PROCEED INSTRUCTION IN ACO

NEXT LOCATION
60000

1400

SKIPS IF I0 OR ALC

MEM REF SKIPS IF X () O

ADDRESS OF REG SAVE BLOCK

SKIPS IF X =1

INDEX VALUE

377

200

DISPLACEMENT

SIGN =) BIT 7

EXTEND SIGN

(X+D) * 2

176000

2000

STRIP INDEX AND DISPL
TAKE OUT @ BIT IF
INSTRUCTION IS INDIRECT
AND INSERT @ BIT IN ADDRESS.

ADDRESS
DISPLACEMENT FOR EXECUTION
MODIFIED INSTRUCTION

4000
170000

NOT JMP/JSR

NEXT WORD AFTER JSR
SKIP IF JMP

JSR

TURN JSR TO JMP. C (- 1

PRE-INCREMENT FOR SKIPS

JFLAG (- 77777 IF NOT JMP/JSR
JFLAG (- 177777 IF JMP/JSR
STORE FOR EXECUTION

192

0008 DB1.5

01

02 00262'020500 LDA 0,SAV0 ; RESTORE AC'S

03 00263'024500 LDA 1,8AV1

04 00264'030500 LDA 2,SAV2

05 00265'034501 LDA 3,5AVCI ; CARRY AND INTERRUPT
06 00266'175140 MOVOL 3,3

07 00267'054414 STA 3,BPN ; TEMPORARY INTERRUPT FLAG
08 00270'034475 LDA 3,SAV3

09 00271'010643 ISZ JFLAG

10 00272'000403 JMP PRINS s NOT JMP/JSR

11

12 00273'014410 DSZ BPN 3 JMP/JSR

13 00274'060177 INTEN

14 00275'000000 PRINS: O s EXECUTE INSTRUCTION
15 00276'014637 DSZ PRADR ; DID NOT SKIP

16 00277'014404 DSZ BPN

17 00300'060177 INTEN

18 00301'002634 CDEX: JMP @RADR ; 'PRADR' 4 WORDS AFTER "RELAD'

193

0009 DBL.5
01

02 ; CONSTANTS AND FLAGS
03

04 00302'177720 M60: =60

05 00303'000000 BPN: O

06 00304'000715'ACRLF: CRLF
07

08 ; COMMAND TABLE
09 ’
10 00305'000510'AT: LFS
11 00306'000511" CRS
12 00307'000565" PLS
13 00310'000663" cs
14 00311'000564" MNS
15 00312'000574" DOTS
16 00313'000550" SLSHS
17 00314'000555" EQLS
18 00315'000526" AS
19 00316'000604" BS
20 00317'000070" ES
21 00320'000107" FS
22 00321'000136" GS
23 00322'000003" PS
24 00323'000141" RS
25 00324'000623" SS
26 00325'000521" ROS
27

28 00326'000012 CT: 12
29 00327'000015 15
30 00330'000053 "y
31 00331'000054 "
32 00332'000055 "
33 00333'000056 ",
34 00334'000057 C57: "y
35 00335'000075 "=
36 00336'000101 "A
37 00337'000102 "B
38 00340'000105 "E
39 00341'000106 "F
40 00342'000107 el
41 00343'000120 "p
42 00344'000122 "R
43 00345'000123 "s

44 00346'000177 C177: 177

0010 DBI1.5

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

194

s SCAN THE COMMAND TABLE.
;s ENTER WITH CARRY = 0

00347'031624 SCAN:
00350"175402
00351'000504
00352'112424
00353'000774

00354'030567
00355'010565
00356'133001
00357'132400
00360'126440
00361'007602

LDA
INC
JMP
SUBZ
JMP

LDA
ISZ
ADD
SUB
SUBO
JSR

2,CT-J,3

3,3,8ZC
GETC+1

0,2,SZR

SCAN

2, TOTAL
SFLAG
1,2,SKP
1,2

1,1
@AT-J-1

>

H

’

.
b
.
L

»3

s AC3 CONTAINS POINTER TO

00362'000000 SAVO:
00363'000000 SAV1:
00364'000000 SAV2:
00365'000000 SAV3:
00366'000000 SAVCI
00367'000000 TTOFL:
00370'000156'LOC:

00371'000000 OFFST:
00372'000000 BOFL:
00373'000001 PRCNT:
00374'000000 MSK:

00375'000000 WRD:

OCOrHOOUOOOOOO

1A
2A
3A
4A
5A
6A
7A
10A
11A
12A
13A

Ve Ve e VI Ve Ve Ve Ve Ve Ve Ve Ve

s CONSTANTS AND FLAGS

00376'000070 C70:
00377'000726'APUT:
00400'000710'AOCT5:

70
PUT
0CT5

000001 .IFN T

00401'000756'ATCBW:

TCBW

.ENDC

; IGNORE CHARACTER

; CARRY = 1 IF AC2) ACO

;3 ADD OR SUBTRACT

AC2 IS SUBTOTAL
ACl = 0, CARRY = 0

AC SAVE BLOCK

0OA OR A

195

0011 DBL.5

01

02 ; A BREAK HAS OCCURRED.

03

04 00402'010771 BREAK: ISZ PRCNT ; RESTORE TO +1

05 00403'063511 SKPBZ TTO ; AC2 IS NOT -1

06 00404'000777 JMP -1

07 00405'063711 SKPDZ TTO ; TEST IF TTO ACTIVE

08 00406'176000 Cl176K: ADC 3,3 ; YES - SET TO -1

09 00407'054760 STA 3, TTOFL

10

11 000001 JIFN T

12 00410034771 LDA 3,ATCBW ; TCB POINTER

13 00411'057417 "~ STA 3,@17,3 ; ACTIVATE DEBUG TASK

14 00412'023755 LDA 0,@ATTOE-TCBW,3 ; TTOEl ADDRESS
15 00413'162405 SUB 3,0,SNR ; IS DEB TASK WAITING ON TTO
16 00414'043755 STA 0,@ATTOE-TCBW,3 ; STOP IT WAITING
17 00415'102460 CLA 0,0

18 00416'042443 STA 0,@ATTIE; CLEAR TTI ECW

19 00417'041403 STA 0,3,3 ; CLEAR ACO IN TCBW FOR AFLAG
20 00420'021421 LDA 0,ARENT-TCBW,3 ; RE-ENTRY ADDRESS
21 00421'041404 STA 0,4,3 3 OVERWRITE PC IN TCBW

22 00422'054540 STA 3,TFLAG ; STAND ALONE MODE

23 .ENDC

24

25 00423'151015 IFZ 2,2 ; TEST IF BREAK OR START
26 00424'006754 JSR @AOCT5 ; BREAK - TYPE ADDRESS

27

28 00425'006657 GO: JSR @ACRLF

29

30 000001 JIFN T

31 00426'010534 ISZ TFLAG ; IS IT TASK MODE

32 00427'000420 JIMP G2

33

34 ; TASK RE-ENTERS HERE. STARTS WITH L4l = 0

35

36 00430'060277 REENT: INTDS

37 00431'010041 ISZ 41 ; -1 =) 0 = OUTSIDE

38 00432'000403 JMP 43 ; DEBUG WAS INTERRUPTED OUTSIDE
39 00433'177777 RAISE

40 00434'177777 SEMDT ; SYNCHRONISE OUTPUT

41

42 00435'177777 .WAIT ; WAIT FOR A KEYSTROKE

43 00436'177777 TTIEC ; DON'T CLEAR YET

44

45 00437'176000 ADC 3,3

46 00440'054522 STA 3,TFLAG ; TASK MODE

47 00441'054642 STA 3,BPN 3 NO 'P' FROM TASK

48 00442'054725 STA 3,TTOFL ; 'R' FROM TASK LEAVES TTO ON
49 00443'060277 INTDS

50 00444'054041 STA 3,41 ; -1 = INSIDE DEBUG TASK
51 00445'177777 LOWER

52 00446'000434" SEMDT

53 .ENDC

196

0012 DBl.5

01

02 00447'040475 G2: STA 0,AFLAG ; SET OR CLEAR AFLAG
03 00450'126460 CLA 1,1 3 CLEAR # REGISTER
04 00451'044474 STA 1,BFLAG ; CLEAR BREAKFLAG

05 00452'044470 STA 1,SFLAG ; SIGN FLAG (NOT -1)
06 00453'044470 STA 1,TOTAL ; SUBTOTAL

07

08 00454'010471 GETC: ISZ BFLAG ; +1 FIRST TIME THROUGH
09

10 000001 LIFN T

11 00455'010505 ISZ TFLAG

12 00456'000412 JMP 412

13

14 00457'014503 DSZ TFLAG

15 00460'000435" WAIT

16 00461'000436'ATTIE: TTIEC ; WAIT AGAIN

17 00462'176460 CLA 3,3

18 00463'056776 STA 3,@.-2 ; CLEAR THIS TIME

19 00464'060477 READS 0 ; IGNORE KEYSTROKE IN TASK MODE
20 00465'101113 IFZP 0,0 s IF SWITCH 0 = 0

21 00466'000742 JMP REENT

22 00467'000403 JMP 43

23 .ENDC

24

25 00470'063610 SKPDN TTI

26 00471'000777 JMP 1

27 00472'060610 DIAC 0,TTI ; NO ECHO PRINT HERE
28 00473'034653 LDA 3,C177 3 177

29 00474'163400 AND 3,0

30 00475'034701 LDA 3,C70

31 00476116032 IFLT 0,3

32 00477'034603 LDA 3,M60

33 00500'117023 ADDZ 0,3,SNC

34 00501'004646 JSR SCAN 3 SCAN FOR BREAK CHAR.
35 J: ;s C=0

36 00502'125120 MOVZL 1,1

37 00503'125120 MOVZL 1,1

38 00504'125120 MovzL 1,1

39 00505'167000 ADD 3,1

40 00506'006671 JSR @APUT ; ECHO

41 00507'000745 JMP. GETC 3 i MODULO 216

197

0013 DB1.5
01

02 ; OPEN AND MODIFY A WORD

03

04 00510'101040 LFS: MOVO 0,0 ; SET CARRY

05

06 00511'034452 CRS: LDA 3,ADRS ; CARRY = 0 FOR CRS

07 00512'024432 LDA 1,AFLAG ; +VE IF CLOSED, -2 IF OPEN
08 00513'020432 LDA 0,BFLAG ; 1 IF NO #,)1 IF #

09 00514'107032 ADDZ# 0,1,SZC

10 00515'051400 STA 2,0,3 ; MODIFY MEMORY

11 00516'165403 INC 3,1,SNC ; TEST IF LINE FEED ENTRY
12 00517'000706 JMP GO ; NO. ECHO CR AT GO

13

14 00520'044443 STA 1,ADRS ; OPEN NEXT LOCATION

15 00521'024442 ROS: LDA 1,ADRS ; RUB OUT RE-OPENS LAST

16 ; OPENED WORD. (NO ECHO)
17 00522'004566 JSR OCT5 3 5 DIGIT OCTAL ADDRESS

18 00523152440 SUBO 2,2 ; C (-0, AC2 (- 0

19 00524'020610 LDA 0,657 ; / PRINTED AT SLSH2

20

21 00525'034436 SLSHI: LDA 3,ADRS

22

23 00526'173002 AS: ADD 3,2,SZC ; ACCUMULATOR ENTRY

24 00527'031400 LDA 2,0,3 ; OPEN ON CONTENTS OF LAST WORD
25 00530'006647 SLSH2: JSR @APUT 3 ECHO PRINT

26 00531'050432 STA 2,ADRS ; OPEN A WORD

27 00532'020571 LDA 0,BRADR ; CURRENT BREAK ADDRESS

28 00533'112415 IFEQ 0,2

29 00534'000423 JMP BRM ; DON'T MODIFY BREAK POINT
30

31 00535'025000 LDA 1,0,2 3 CONTENTS

32 00536'004531 JSR B.OCT ; TYPE OCTAL OR BIN

33 00537'004566 JSR PSPCE ; A SPACE

34 00540'102120 ADCZL 0,0 ; AFLAG (- -2

35 00541'000706 G5: JMP G2

36

37 00542'000000 SFLAG:
38 00543'000000 TOTAL:
39 00544'000000 AFLAG:
40 00545'000000 BFLAG:
41 00546'000000 SADR:
42 00547'000000 SCNT:

[eNoNoNoNoeNoe]

0014 DBl.5

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

00550'014775
00551'000757

00552'034772
00553'175100
00554'000751

00555'004551
00556'145001

00557'026545
00560'004507
00561'000644

000001
00562'000000

00563'000000

00564'176000
00565'054755
00566'034757
00567'175235
00570'030601

00571'004535
00572'050751
00573'000661

00574'034767
00575'175100
00576'175220
00577'014743
00600'010742
00601'173001
00602'172400
00603'000766

3 MISCELLANEOUS ROUTINES

SLSHS: DSZ
JMP
LDA
MOVL
JMP
EQLS: JSR
MOV
BRM: LDA
JSR
G4 JMP
JIFN T
TFLAG: O
.ENDC
ADRS: 0

198

BFLAG
SLSH2

3,AFLAG
3,3
SLSHI1

PUT
2,1,SKP

1,@ABRI
B.OCT
GO

.

b

b

ve

E

>

3

/ ENTRY

;3 OPEN WORD JUST TYPED

1 TF AFLAG IS -VE

I
0

Nl

C
AC

s ECHO
;3 PRINT VALUE

3 PRINT BREAK CONTENTS

;s MAY BE INSPECTED AS 200A

; ARITHMETIC ROUTINES
; AC2 IS NEW TOTAL, ACl

MNS: ADC

PLS: STA
LDA
MOVZRi#
LDA

DOT1: JSR
STA
JMP

DOTS: LDA
MOVL
MOVZR
DSZ
ISz

SUB
JMP

3,3

3,SFLAG
3,BFLAG
3,3,SNR
2,0FFST

PUT
2, TOTAL
GETC

3,ADRS
3,3

3,3
SFLAG
SFLAG
3,2,SKP
3,2
DOT1

Ve Ve Ve Ve Ve

ve

ve

0

-1

NOT -1

TEST FOR PREVIOUS #

IF SIGN IS 1ST CHAR, LOAD
OFFSET REGISTER

ECHO

ACl IS CLEAR

. = ADDRESS OF LAST WORD

+VE = NOT -1

199

PUT

2,2
BFLAG
2,2,5Kp
2,ABRI ;
0,@ABRI

ADDRESS OF BREAK INSTRUCTION

0, @BRADR
0,0,2
0,@ABRI
2,BRADR
0,BREN ; SET UP BREAK LINKAGE NOW
FOR TASK EXECUTION

JMP @QLINK

AT NEW BREAK POINT

H
0,LINK ;
0,BRKI ;
0,0,2 H

0015 DBI.5

01

02 ; SET UP A BREAKPOINT
03

04 00604'004522 BS: JSR
05 00605'151100 MOVL
06 00606'014737 DSZ
07 00607'151221 MOVZR
08 00610'030514 LDA
09 00611'022513 LDA
10 00612'042511 STA
11 00613'021000 LDA
12 00614'042510 STA
13 00615'050506 STA
14 00616'020533 LDA
15 00617'040017 STA
16 00620'020532 LDA
17 00621'041000 STA
18 00622'000737 JMP

G4

200

0016 DBL.5

01

02 ; SEARCH MEMORY

03

04 00623'014721 SS: DSZ AFLAG ; TEST IF XXX,

05 00624'044722 STA 1,SADR ; NO - START OF SEARCH = 0
06 00625'126220 ADCZR 1,1 s 77777

07 00626'014717 DSZ BFLAG ; ANY 2ND ARGUMENT?
08 00627'147400 AND 2,1 ; YES - MASK BIT 0

09 ; NO - SEARCH ENDS AT 77777
10 00630'030716 LDA 2,SADR

11 00631'132022 ADCZ 1,2,SZC ; SEARCH LENGTH

12 00632'000727 JMP G4 ; ~VE - NO SEARCH

13

14 00633'050714 STA 2,SCNT

15 00634'031413 LDA 2,WRD-SAVO, 3

16 00635'004471 JSR PUT ; ECHO

17

18 00636'026517 SLP: LDA 1,@AMSK

19 00637'133400 AND 1,2 ; MASK SEARCH WORD

20 00640'022706 LDA 0,@SADR ,

21 00641'123400 AND 1,0 ; MASK WORD

22 00642'112414 IFNE 0,2 ; IFEQ FOR OPPOSITE SEARCH
23 00643'000414 JMP SNEXT

24

25 00644'024702 LDA 1,SADR

26 00645'004443 JSR 0CT5 ; PRINT CR AND ADDRESS
27 00646'026700 LDA 1,@SADR

28 006471004420 JSR B.OCT ; PRINT SPACE AND VALUE
29

30 000001 JIFN T

31 00650'010712 ISZ TFLAG

32 00651'000404 JMP o

33 00652'014710 DSZ TFLAG

34 00653'036606 LDA 3,@ATTIE

35 00654'175113 IFZP 3,3 ; TEST FOR KEYSTROKE
36 .ENDC

37 00655'063710 SKPDZ TTI

38 00656'000703 JMP G4 ; KEY HAS BEEN STRUCK
39

40 00657'010667 SNEXT: ISZ SADR

41 00660'010667 1Sz SCNT

42 00661'000755 JMP SLP

43 00662'000677 JMP G4 ; SEARCH COMPLETE

44

45 ; ENTER FROM ",".

46

47 00663'050663 CS: STA 2,SADR ; LOWER LIMIT

48 00664 '004442 JSR PUT ; ECHO

49 00665'102520 SUBZL 0,0 ; +1 =) AFLAG

50 00666'000653 JMP G5

201

0017 DB1.5

0l

02 ; BINARY AND OCTAL PRINTOUT (AC2 UNCHANGED)
03

04 00667'022461 B.OCT: LDA 0,@ABOFL; BINARY OR OCTAL
05 00670'101024 MOVZ 0,0,SZR ; O = OCT, 1 = BIN
06 00671'177240 ADDOR 3,3 ; EITHER WAY C = 0
07 00672'054462 STA 3,SAVOC

08 00673'004432 JSR PSPCE ; PRINT A SPACE
09

10 00674'020451 LDA 0,C1.3 3 ACO (- 100030
11 00675'101060 O1: MOVC 0,0 ; C(-cC'

12 00676'125105 MOVL 1,1,SNR

13 00677'001400 JMP 0,3 ; RETURN

14 ; CARRY IS SET

15 00700'101103 MOVL 0,0,SNC

16 00701'000775 JMP 01+1

17 :

18 00702'004424 JSR PUT ; PRINT CHARACTER
19 00703'034451 LDA 3,SAVOC

20

21 00704'020442 05: LDA 0,C2.6

22 00705'175112 IFM 3,3

23 00706'000766 JMP 01-1 ; BINARY

24 00707'000766 JMP o1 ; OCTAL

25

26 00710'054444 OCT5: STA 3,SAVOC ; 5 DIGIT OCTAL
27 00711'004404 JSR CRLF ; PRINT CR LF

28 00712'125143 MOVOL 1,1,SNC ; IGNORE BIT O

29 00713'101040 SPACE: MOVO 0,0 ;1 C (-1

30 00714'000770 JMP 05

31

32 ; PRINT CR AND LF

33

34 00715'020432 CRLF: LDA 0,C5015

35 00716'054435 STA 3,SAVCR

36 00717'004407 JSR PUT

37 00720'101300 MOVS 0,0

38 00721'004405 JSR PUT

39 00722'002431 JMP @SAVCR

0018 DBI.5

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

46
47
48
49
50
51
52
53

00723'000056"'
00724'000056"

00725'020766

000001
00726'010634
00727'000411
00730'054040
00731'014631
00732'000460"'
00733'177777
00734'176460
00735'056776
00736'061111
00737'002040

00740'054622

00741'061111
00742'063511
00743'000777
00744'001400

00745'100030
00746'020006
00747'005015

00750'000372"'
00751'000162"
00752'002017
00753'000000
00754'000000
00755'000374"'

000001
000017
00775'000774"'

00776 '004000
00777'000430"

000156

202

BRADR: BRINS
ABRI: BRINS
3 PRINT A SPACE
PSPCE: LDA 0,SPACE
s PRINT A CHARACTER IN ACO
PUT:
JIFN T
ISZ TFLAG
JMP Pl
STA 3,40 ;3 L40 CAN ONLY BE USED IN TASK
DSz TFLAG
JWAIT
ATTOE: TTOEl
CLA 3,3
STA 3’@0-2
DOAS 0,TTO
JMP @40
Pl: STA 3,TFLAG ; NOT -1
«ENDC
DOAS 0,TTO
SKPBZ TTO
M .-1
JMP 0,3
Cl.3: 100030
C2.6: 20006
C5015: 5015
ABOFL: BOFL
BREN: BRK
BRKI: JMP @LINK
SAVCR: O
SAVOC: O
AMSK: MSK
+IFN T
TCBW: «BLK 17
~1 s PREVENT STORING RUBBISH IN TASK
3 LIST WHEN FIRST STARTED.
1B4
ARENT: REENT ;s TASK START
.ENDC
«END DB1.5

-

0019

ABOFL
ABRA
ABRI
ACRLF
ADRS
AFLAG
AGO
AMSK
AOCT>5
APUT
ARENT
AS
ASAV
AT
ATCBW
ATFLG
ATTIE
ATTOE
ATTOF
BFLAG

BLL
BOFL
BPN
BPN1
BRADR
BREAK
BREN
BRINS
BRK
BRKI
BRM
BS
B.OCT
C1400
Cl76K
Cl177
cl.3
€20
C2.6
€377
C4K
C5015
C57
C60K
C70
CDEX
CRLF
CRS
cs
CSL
CT
DB1.5
DOT1
DOTS
EMI
EQLS
ES
FLP

DBL.5

000750
000057"
000724
000304
000563"
000544
000133"
000755
000400
000377"
000777"
000526
000061 "
000305"
000401
000066
000461"
000733"
000060
000545"

000012'
000372"'
000303"'
000065
000723'
000402"
000751"
000056"'
000162
000752"
000557"'
000604"'
000667
000055"'
000406"'
000346
000745"
000002"'
000746"'
000062"
000132
000747'
000334
000063"
000376"'
000301"'
000715"
000511"'
000663"
000030"
000326
000156
000571"'
000574
000214
000555"
000070"
000102'

17/04
3/34
14/14
5/45
13/06
2/34
2/46
16/18
10/37
2/41
11/20
9/18
3/36
9/10
10/40
3/42
11/18
11/14
3/35
4/05
15/06
2/43
10/28
5/07
3/40
3/34
6/47
15/14
3/33
6/16
15/16
13/29
9/19
13/32
3/31
7/23
9/44
17/10
2/32
17/21
3/37
5/28
17/34
9/34
3/38
10/35
7/31
9/06
9/11
9/13
3/04
9/28
6/11
14/32
9/15
5/22
9/17
4/05
4/16

203

18/35
5/18
15/08
9/06
13/14
12/02
4/20
18/40
11/26
4/09
18/49
13/23
7/13
10/16
11/12
5/37
12/16
11/16
5/15
5/41
16/07
3/21
18/35
6/30
6/14
13/27
11/04
18/36
5/17
18/36
18/37
14/14
15/04
14/15
7/07
11/08
12/28
18/31
2/48
18/32
7/17
5/40
18/33
13/19
7/06
12/30
8/18
17/27
13/06
16/47
3/08
10/05
10/26
14/43
14/36
7/05
14/11
9/20
4/19

6/41
15/09
11/28
13/15
13/07

5/29

4/25

5/55
16/34
18/18

5/46
12/04

8/07
6/26
15/10

6/42

16/28

7/34

17/34

18/53

4/26

15/12

13/21
13/39
6/38

5/14

12/08

8/12
6/33
15/13

18/02

17/04

18/03

13/26
14/07

5/44

13/08

8/16

18/02

18/03

14/21 14/36

16/04

10/36 12/40 13/25
13/40 14/04 14/28
9/05 11/47

0020

FS

GO

G2

G4

G5
GETC
GFLAG
GS
INTFL

JFLAG
LFS
LINK
LOC
LOWER
M60
MNS
MSK
NOTJ
NOTX
01

05
0CT5
OFFST
P1
PLP
PLS
PRADR

PRCNT
PRINS
PROC
PS
PSPCE
PTPS
PUT

PW

R1
RAISE
REENT
RELAD
ROS
RS
RTI
SADR

SAVO

SAV1
SAV2
SAV3
SAVCI
SAVCR
SAVOC
SCAN
SCNT

DB1.5

000107'
000425"
000447"'
000561"'
000541"
000454"'
000067
000136"'
000064"'
000502
000134"'
000510"
000017
000370'
000445'X
000302"
000564"'
000374
000256"'
000246"'
000675"'
000704
000710°
000371"'
000740"
000040
000565"
000135"'

000373"
000275"
ooo112'
000003’
000725"'
000000"
000726"

000050'

000242"'
000433'X
000430"
000131'
000521"
000141"
000001$X
000546

000362"'

000363"
000364
000365"'
000366
000753"
000754"'
000347'
000547"'

4]24
5/09
11/32
14/16
13/35
10/07
3/43
5/35
3/39
10/05
2/39
9/10
3/33
5/43
11/51
4/08
9/14
10/30
7/37
7/11
17/11
17/21
10/37
10/27
18/14
3/13
9/12
5/19

- 8/15

5/13
7/47
2/35
2/34
13/33
2/26
10/36
17/38
2/53
4/13
5/48
11/39
11/36
2/51
9/26
5/41
2/27
2/40
16/47
2/34
4/25
8/02
6/21
6/22
6/23
6/29
17/35
17/07
10/05
13/42

204

9/21
5/29
12/02
15/18
16/50
12/08
5/38
9/22
6/12
10/16
2/44
13/04
5/26
10/26

4/24
14/26
18/40
7/ 44
7/34
17/16
17/30
13/17
14/30
18/24
3/17
14/27
5/21
8/18
6/45
8/10
5/07
9/23
17/08

14/11
18/11
2/55
4/17
7/29

12/21
3/10
13/15
9/24

13/41

2/40
5/09
10/20
8/03
8/04
7/41
8/05
17/39
17/19
10/09
16/14

11/28
13/35
16/12

12/41
5/54

6/17
12/35
5/30

15/15

9/04

17/23

16/26

5/31
10/29
8/14
18/07
14/32

3/09

18/49
5/217

16/05

2/41
5/13
16/15

10/21

10/22

8/08
10/24
18/38
17/26
12/34
16/41

13/12
16/38

14/34

6/25
5/56

18/37

12/32

17/24

17/26

6/43

11/04

15/04

3/14

5/53

16/10

3/36
5/14

10/23

18/39

14/16

16/43

6/32

6/36

7/05

16/16

3/20

5/57

16/20

4/05
5/41

7/46

7/29

16/48

3/26

7/30

16/25

4/08
5/43

8/09

7/39

17/18

3/30

16/27

4/09
5/44

7/44

17/36

4/11

16/40

4/24
6/20

205
0021 DBl.5

SEMDT 000446'X 11/40 11/52

SFLAG 000542' 10/12 12/05 13/37 14/27 14/39 14/40
SLP 000636" 16/18 - 16/42 .

SLSH1 000525' 13/21 14/09

SLSH2 000530’ 13/25 14/05

SLSHS 000550 9/16 14/04

SNEXT 000657"' 16/23 16/40

‘SPACE 000713' 17/29 18/07

SS 000623" 9/25 16/04
TCBW 000756"' 10/40 11/14 11/16 11/20 18/44
TFLAG 000562 3/42 11722 11/31 11/46 12/11 12/14 14/19 16/31

16/33 18/13 18/16 18/24
TOTAL 000543 10/11 12/06 13/38 14/33
TTIEC 000461'X 11/43 12/16
TTOE1 000733'X 18/18
TTOFL 000367' 3/35 10/25 11/09 11/48
WRD 000375"' 10/31 16/15
JWAIT 000732'X 11/42 12/15 18/17

