
BALAD
(Beginners Assembly Language and Debugger)

 1 INTRODUCTION
BALAD is an assembly-level programming language for an emulated virtual computer with a 15-bit
word length. It is combined with a comprehensive debugging system that allows online program
assembly, execution of programs and the insertion of breakpoints to allow suspension of programs
during execution.

Instructions are machine-oriented, using integer and logical operations only. As a concession to the
beginner, extra input/output instructions are provided for automatic Decimal to Binary conversion
and the printing of Text Strings. These facilities will enable students to obtain a reasonable printout
of their results quickly while concentrating their efforts on developing algorithms.

Copyright © 2020-2021 John E. Wulff

SPDX-License-Identifier: GPL-3.0+ OR Artistic-2.0

https://github.com/JohnWulff/balad
$Id: BALAD.odt 1.7   2021/09/02

.................###########.................

...........#######################...........

........#########...........#########........

......#######...................#######......

....######.........................######....

...####...............................####...

..###...................................###..

.###......##.....................##......###.
###......####...................####......###
###.....######.................######.....###
##......######.................######......##
##.......####...................####.......##
##.........................................##
##......##.........................##......##
###....####.......................####....###
###...##..####.................####..##...###
.###.......########.......########.......###.
..###..........###############..........###..
...####..............###..............####...
....######.........................######....
......#######...................#######......
........#########...........#########........
...........#######################...........
.................###########..............…

generated with the BALAD program smiley.bl

https://github.com/JohnWulff/balad


2

Table of Contents
 1  INTRODUCTION...........................................................................................................................1
 2  THE BALAD COMPUTER............................................................................................................3

 2.1  THE INSTRUCTION FORMAT.............................................................................................3
 2.1.1  Double Operand Operations.............................................................................................4
 2.1.2  Single operand operations................................................................................................4

 2.2  THE INSTRUCTIONS............................................................................................................5
 2.2.1  Double Operand Operations.............................................................................................5
 2.2.2  Move data instructions.....................................................................................................5
 2.2.3  Single Operand Instructions.............................................................................................5
 2.2.4  Rotate and shift instructions.............................................................................................6
 2.2.5  Jump Instructions.............................................................................................................7
 2.2.6  Input instructions..............................................................................................................8
 2.2.7  Output Instructions...........................................................................................................9

 2.3  THE ASSEMBLY LANGUAGE...........................................................................................10
 2.3.1  Comments.......................................................................................................................11
 2.3.2  List of instructions in op code order..............................................................................13
 2.3.3  Data Formats..................................................................................................................14

 2.4  HISTORY..............................................................................................................................14
 3  THE BALAD ASSEMBLER........................................................................................................15

 3.1.1  BALAD Help.................................................................................................................15
 3.1.2  Interactive Input Mode...................................................................................................15
 3.1.3  Listing Options...............................................................................................................16

 4   THE BALAD DEBUGGER.........................................................................................................17
 4.1.1  Running a program.........................................................................................................18
 4.1.2  Instruction Tracing.........................................................................................................18
 4.1.3  Breakpoints....................................................................................................................19
 4.1.4  Watchpoints....................................................................................................................20
 4.1.5  Listing or viewing memory locations............................................................................21
 4.1.6  Modifying memory locations.........................................................................................22

 5  “GEORGE” a Reverse Polish Notation Calculator.......................................................................22
 5.1  PROGRAMMING GEORGE................................................................................................24

 5.1.1  Reverse Polish Notation.................................................................................................24
 5.1.2  Other Operators..............................................................................................................26

 5.2  The overall strategy of GEORGE..........................................................................................28
 5.3  Analysis of the BALAD implementation george.bl..............................................................30

 5.3.1  Variables and Constants.................................................................................................30
 5.3.2  Main Program................................................................................................................30
 5.3.3  Subroutines.....................................................................................................................35
 5.3.4  Help text.........................................................................................................................36
 5.3.5  BALAD on Windows 10................................................................................................36

 6  FINALLY......................................................................................................................................36



3

 2 THE BALAD COMPUTER

Fig. 1.

The BALAD computer is a one accumulator machine with an arithmetic unit for performing logical
operations  and  15  bit  two's  complement  arithmetic.  The  Memory  has  512  15  bit  words  with
addresses 0 to 777 (octal numbering). Memory words may contain instructions, addresses of other
memory words or data.

At the start of every instruction cycle, the address in the Program Counter register (PC) is used by
the  computer  to  fetch  an instruction  from memory  into  the  Instruction  Decoder.  The  Program
Counter is normally incremented by 1 at the end of an instruction cycle so that the next instruction
is fetched from the next location in Memory. Only a jump instruction can break this sequence by
loading  the  Program Counter  with  a  new address  which  points  to  some arbitrary  point  in  the
memory from where the next instruction will then be fetched.

The  Instruction  Decoder  isolates  bits  1  to  5  of  the  instruction  and  uses  this  as  a  number  to
distinguish between one of the 32 possible instructions. The instruction that has been identified is
then executed. In a hardwired computer, this process involves setting various switches to allow data
to flow from various registers to other registers.

For illustration two such switches are shown in the schematic above, which guide the result and
carry values of an operation from the arithmetic unit either to the Accumulator and Carry for double
operand instructions, ignore them for compare instructions or back to Memory and Carry for single
operand instructions. The last 10 bits of the instruction are used to determine a memory reference
address. This can again be thought of as setting a big switch that connects one data path to one of
512 words in memory.

 2.1 THE INSTRUCTION FORMAT
Fig. 2.



4

Instructions are stored in 15-bit memory registers. Bits 1 to 5 are the operation code, which selects
32 possible operations. Bit 6 is the Indirect bit. If it is zero (0) the value in bits 7 to 15 is taken as
the address of the operation of the instruction. If the Indirect bit is a one (1), the address in bits 7 to
15 is used to locate another word whose value in bits 7-15 is used as the address of the first operand
of the instruction. Before this is done the Indirect bit of this new word is first checked, and if it is a
one (1) the process is repeated. Normally only one level of indirect addressing is used. If more than
four levels of indirect address are attempted the computer will stop. This is to break up infinite
indirect addressing chains which can happen accidentally if an indirect reference points to itself.

Of the 32 instructions, 4 are double operand arithmetic or logical operations, 2 are data moving
operations, 10 are single operand operations, 8 are conditional or unconditional jump operations and
the remaining 8 are Input/Output operations. Each instruction has a memory reference part, which
addresses a word in memory.

 2.1.1 Double Operand Operations

For double operand operations, the 1st   operand is
taken from the addressed memory location, while the
second operand is the Accumulator.

The  result  of  the  operation  is  stored  in  the
Accumulator and the Jump Tester as described later.
One exception is the  compare (CMP) operation for
which the result  is  only stored in the Jump Tester.
The result in the Jump Tester is used by conditional
jump instructions which follow an operation. Fig. 3.

 2.1.2 Single operand operations

For single  operand operations,  the one operand is
taken from the addressed memory location and the
result is stored back in that same location. The result
is also stored in the Jump Tester.

Six  different  conditions  of  the  result  in  the  Jump
Tester can be tested and if the condition is True a
jump to the memory reference address in the jump
instruction is executed. If False, the next instruction
is executed. Note that the result used in the test is the Fig. 4.
result of the last operation executed before the test in the following jump instruction. It does not
matter whether this result was also stored in the Accumulator, a memory location, or not stored at
all, as in a CMP or TST instructions.

Most arithmetic operations are characterized by the fact that information is carried from one-bit
position  to  the  next.  All  computers  have  an  arithmetic  unit  of  limited  length  (15  bits  in  this
machine). Therefore arithmetic operations will sometimes overflow. So that this case can be catered
for, the output of the most significant bit (bit 1) is available to the programmer. The arithmetic unit
is extended by one bit to 16 bits, and for practical purposes, the 1st operand is also extended by 1
bit. Storage for this bit is in the "Carry" register.  The value of the Carry register also serves as input
for most arithmetic operations, and the output of the "Carry" position of the arithmetic unit is stored
back in the Carry register for both single and double operand operations. Only for the  compare
operation (CMP) and the test operation (TST) is the new Carry not stored. The output of the Carry
position is also stored in the jump tester for all instructions, including CMP and TST for subsequent
conditional jump tests for the state of "Carry".



5

For programmer convenience, the Accumulator and the Carry register are both addressable by a
memory reference. This means that all the single operand operations can also be carried out on the
Accumulator and Carry. Since Carry is only a one-bit register some of the operations may not be
very significant. The Accumulator has memory address 0 and the predefined label ACC; the Carry
register has address 777, the highest address and the predefined label C.

 2.2 THE INSTRUCTIONS
 2.2.1 Double Operand Operations

AND MR with Accumulator (OP CODE 20)

The logical and function of each bit of the contents of the Memory Reference and each bit of the
Accumulator is stored in the Accumulator and the Jump Tester. Carry is not affected.

ADD MR to Accumulator (OP CODE 22)

Add the contents of the Memory Reference and Carry to the Accumulator and store the Result in the
Accumulator. If the unsigned sum is > 215, set the Carry register,  else reset it. Accumulator and
Carry are also stored in the Jump Tester.

SUB MR from Accumulator (OP CODE 24

Subtract by adding the two's complement of the contents of the Memory Reference and Carry to the
Accumulator and store the Result and Carry-out in the Accumulator, Carry and the Jump Tester.

CMP Accumulator with MR (OP CODE 26)

The same operation as SUB except that Carry-in is set to zero and the Result and Carry-out are only
stored in the Jump Tester. Accumulator, Carry and Memory Reference are left unmodified.

 2.2.2 Move data instructions

LDA Load Accumulator from MR. (OP CODE 30)

Load the contents of the Memory Reference into the Accumulator and the Jump Tester. The contents
of the Memory Reference and Carry are unaffected. The original contents of the Accumulator are
lost.

STA Store Accumulator at MR. (OP CODE 32)

Store the contents of the Accumulator at the Memory Reference location and the Jump Tester. The
contents of the Accumulator and Carry are unaffected. The original MR contents are lost.

 2.2.3 Single Operand Instructions

CLR Clear MR (OP CODE 34)

Zero is stored in the Memory Reference location and the Jump Tester. Carry is not affected.

TST Test MR (OP CODE 36)

Move the contents of the memory reference to the jump tester without changing the MR. Carry is
not affected.

COM Complement MR (OP CODE 40)

Store the logical complement of the contents of the Memory Reference in the Memory Reference
location and the Jump Tester. Carry is not affected. The logical complement is also the bitwise
complement or the One’s complement.



6

NEG Negate MR (OP CODE 42)

Store the Two's complement of the contents of the Memory Reference in the Memory Reference
location and the Jump Tester. If the original contents were zero, complement Carry.

INC Increment MR (OP CODE 44)

Add 1 to the contents of the Memory Reference and store the result  at the Memory Reference
location and the Jump Tester. If the original contents were 215-1 (signed -1), complement Carry.

DEC Decrement MR (OP CODE 46)

Subtract 1 from the contents of the Memory Reference and store the result at the Memory Reference
location and the Jump Tester. If the original contents were 0, complement Carry.

 2.2.4 Rotate and shift instructions

These are single operand operations for bit manipulation, scaling data by factors of 2 and byte
manipulation. Rotates are used for testing sequential bits of a word. In each, the Carry register and
the contents of the Memory Reference are manipulated in different ways, and the result is stored in
the Memory reference location, Carry and the Jump Tester.

ROL Rotate left MR and Carry (OP CODE 50) Fig. 5.

Rotate the contents of the Memory Reference and the Carry Register one bit left as shown in  
Fig. 5.

ROR Rotate Right MR and Carry (OP CODE 52) Fig. 6.

Rotate the contents of the Memory Reference and the Carry Register one bit right as shown in  
Fig. 6.

ASR Arithmetic Shift Right MR and Carry. (OP CODE 54) Fig. 7.

The sign bit (bit 1) is replicated and also shifted right. All other bits are also shifted right and bit 15
is shifted into Carry. The old value of Carry is lost.

SWP Swap Bytes in MR. (OP CODE 56) Fig. 8.



7

Bits 1 to 7 and bits 9 to 15 of the contents of the Memory Reference are Swapped. Bit 8 is set to
zero. Carry is not affected. The process is illustrated in Fig. 8. A 7-bit BYTE is normally used to
store a 7 bit ASCII character. The SWP operation allows 2  7 bit ASCII characters to be stored and
retrieved from one word. NOTE: no 8 bit extended ASCII characters can be used in BALAD.

 2.2.5 Jump Instructions

These instructions allow the alteration of the normal program sequence by jumping to an arbitrary
location in memory. Conditional jump instructions also test  the copy of the last  result or Carry
stored in the Jump Tester. If the condition tested is  True, a jump is performed If the condition is
False,  the next instruction in the word sequence is  executed.  No registers,  except  the Program
Counter, are modified in the operations.

A special case is a jump to location 0, which is also the Accumulator. This instruction is interpreted
as a HALT (HLT) instruction and execution of a program stops and control is returned to the calling
OS or the Debugging System. (A conditional halt  can be implemented by making the memory
reference of one of the conditional jump instructions 0 although this is deprecated).

JMP Unconditional Jump. (OP CODE 00)

Load the Memory Reference of the instruction (not its contents, unless the memory reference is
indirect) into the Program Counter (PC). This has the effect, that the next instruction is fetched from
the new location now pointed to by the PC

JZR Jump if Zero Result. (OP CODE 04)
JEQ Jump if equal. jump if ACC == MR following a CMP instruction

Load MR into PC if the last Result stored in the jump tester was zero. Otherwise, execute the next
instruction.

JNR Jump if Non-Zero Result. (OP CODE 06)
JNE Jump if not equal. jump if ACC != MR following a CMP instruction

Load MR into PC if the last Result stored in the jump tester was non-zero. Otherwise, execute the
next instruction.

JZC Jump if Zero Carry. (OP CODE 10)
JLT Jump if less than. jump if ACC < MR following a CMP instruction

Load MR into PC if the last Carry stored in the Jump Tester was Zero. Otherwise, execute the next
instruction.

JNC Jump if Non-Zero Carry. (OP CODE 12)
JGE Jump if greater than or equal. jump if ACC >= MR following a CMP instruction

Load MR into PC if the last Carry stored in the Jump Tester was One. Otherwise, execute the next
instruction.

JEZ Jump if ether zero. (OP CODE 14)
JLE Jump if less than or equal. jump if ACC <= MR following a CMP instruction

Load MR into PC if either the Result or the Carry stored in the Jump Tester were Zero. Otherwise,
execute the next instruction.

JBN Jump if both non-zero (OP CODE 16)
JGT Jump if greater than. jump if ACC > MR following a CMP instruction



8

Load MR into  PC if  both  the  Result  and the  Carry stored in  the Jump Tester  were  Non-zero.
Otherwise, execute the next instruction.

JMS Jump to Subroutine. (OP CODE 02)

Load the contents of the incremented Program Counter (PC) into the Memory Reference location.
This is the address of the next instruction in the normal program sequence. Then load MR + 1. (not
its contents) into the PC. Thus a jump has been made to the location MR + 1.

Subroutines are written in this system with the first location free to store the "Return Address"
(PC+1 as above).  The first  instruction in the subroutine follows this  location.  To return from a
subroutine,  an  indirect  jump  is  made  via  the  first  location  of  the  subroutine.  Then  control  is
transferred  to  the  location  following the  one  from which  the  call  was made.  Indirect  Memory
references are written in the assembler language by preceding a location number by the symbol "@"
e.g. JMP @400, which is jump indirect contents of location 400 for a subroutine at LOC 400.

 2.2.6 Input instructions

KDN Key Decimal Number to MR (OP CODE 60)

When this  instruction  is  executed the  string  Enter  a  short  number: is  output  to  indicate  to  the
operator that a single-precision decimal number is to be typed on the keyboard. The first character
may be "+" or "-" or a decimal digit. If no sign is typed the number is assumed to be positive. A
number is terminated by the Enter key and execution of the program continues. The number that
was typed is converted to a 15-bit binary number and stored at the Memory Reference location. If
the number is to be interpreted as signed the absolute magnitude must be less than 8,192 (214). If
unsigned, the input must be positive and less than 16,384 (215). If input exceeds these limits, the
converted number will be reduced modulo 215.

KDD Key Double Decimal to MR and MR+1. (OP CODE 62)

When this  instruction  is  executed  the  string  Enter  a  long number: is  output  to  indicate  to  the
operator that a double-precision decimal number is to be typed on the keyboard. The first character
may be "+" or "-" or a decimal digit. If no sign is typed the number is assumed to be positive. A
number is terminated by the Enter key and execution of the program continues. The number that
was typed is converted to a 30-bit binary number and stored at MR and MR+1. If the number is to
be interpreted as signed the absolute magnitude must be less than 536,870,912 (229). If unsigned, the
input must be positive and less than 1,073,741,824 (230). If input exceeds these limits, the converted
number will be reduced modulo 230.

KCH Key Character to MR. (OP CODE 64)

When this instruction is executed the first character that is typed on the keyboard is stored at the
memory reference location as a 7 bit ASCII character in bits 9 to 15. Bits 1 to 8 are made zero. This
is normally the only form of input from a keyboard on a simple computer. The character is not
echoed. All the other input instructions echo the characters typed.

KCS Key Character String to MR+. (OP CODE 66)

Key in characters and store them two bytes to a word starting at MR. The Enter key terminates
entry and stores a NULL to terminate the string. Care is taken not to overflow memory.

When  q or  Ctrl-D is entered at the keyboard when executing any of the Key input instructions
KDN, KDD or KCS, this will stop the running BALAD program and return to the debug input >>
if it was started from the debugger. Otherwise, the program will terminate. KCH will only stop with
Ctrl-D. Ctrl-C will always terminate a BALAD program.



9

 2.2.7 Output Instructions

Print and Type are the same in BALAD

PDN Print Decimal Number at MR. (OP CODE 70)
TDN Type Decimal Number at MR.

Convert the contents of Memory Reference, interpreted as a 15 bit two's complement number, to a
decimal character string and type this string on the screen.

PDD Print Double Decimal at MR and MR+1. (OP CODE 72)
TDD Type Double Decimal at MR and MR+1.

Convert the contents of MR and MR+1, interpreted as a 30 bit two’s complement number, to a
decimal character string and type this string on the screen.

PCH Print Character at MR. (OP CODE 74)
TCH Type Character at MR.

Type the character corresponding to the ASCII code represented by bits 9 to 15 of the contents of
the Memory Reference Bits 1 to 8 are ignored.

PRF Print Character String starting at MR. (OP CODE 76)
TCS Type Character String starting at MR.

A Character  String  is  a  sequence of  characters  terminated  by a  NULL character  (ASCII  0).  A
convention  for  this  machine  and  many  other  computers  is  that  character  strings  are  stored  2
characters per word in the following format:

Fig. 9

Character strings may contain page formatting characters of the ASCII alphabet, such as a NEW
LINE entered as \n, or a TAB entered as \t. A real \ must be entered as \\. In practice, character
strings are entered into the memory by the Debugging system during Program Assembly as “a
character string in parenthesis”. The address of the first character in each string is then known and
an instruction PRF for that address will cause that character string to be printed at execution time.
This facility can be used to provide spaces between numbers, to start printing on a new line, and to
precede key number instructions with a printout of a short message to indicate what the number
represents.  Printout  of  results  can  also  be  preceded  or  followed  by  messages  to  produce  a
reasonably workmanlike output of a program and to aid in the identification of results, which is
very important.



10

The PRF instruction has been extended so that the parameter string pointed to by MR is interpreted
like the format string of a  printf instruction in the Perl or  C language. The  % character in such a
string starts a conversion defined as follows:

%d word at next ADR n after the PRF is output as short signed decimal.
%u word at next ADR n after the PRF is output as short unsigned decimal.
%o word at next ADR n after the PRF is output as short unsigned octal.
%x word at next ADR n after the PRF is output as short unsigned hexadecimal.
%b word at next ADR n after the PRF is output as a short unsigned binary.
%s string starting at next ADR n after the PRF is output as an embedded string.
%c character at next ADR n after the PRF is output as an embedded character.
%% print a single %.

When the letters d, u, o, x and b are preceded by a letter ‘l’, the word ADR n after the PRF is 
interpreted as a long double precision word at ADR n and ADR n+1. The letters D, U and O are 
aliases for ld, lu and lo. Field width numbering follows printf conventions in Perl or C.

ADR is a pseudo instruction, which tells the assembler that the following MR is an address.

 2.3 THE ASSEMBLY LANGUAGE
Computer  programs are stored in  the computer  Memory as binary numbers.  This is  the way a
computer reads instructions. As human beings, we devise shortcuts to make what is often referred to
as a  binary machine language program more tractable.  The first  step is  to  divide every binary
number mentally into several groups of three bits. In our case for a 15-bit machine, we would have
five 3 bit groups.

Fig. 10

Then each group of 3 bits can easily be converted into a number between 0 and 7. The 5 numbers
together constitute the OCTAL representation of the binary number. OCTAL representations can be
used  for  instructions  or  data.  Certain  sub-fields  of  a  Memory location,  e.g.  the  9  bit  Memory
reference can be expressed as a 3 digit OCTAL number.

OCTAL representations are easier to handle in the long run than DECIMAL representations because
they preserve the regularity of binary groups. OCTAL counting is easy as long as you remember
that, you always stop at 7 and then go to the next highest position say 10 or 17 to 20, etc. The main
use for OCTAL numbers in this machine is for addressing Memory locations1. 

Another simplification is to break up a binary number into arbitrary fields and to give each possible
combination of bits in a field a label. This is a little like labelling 3-bit fields with digits 0 to 7 for
the 8 possible bit combinations. In this assembly language, the OP CODE field of instructions has
been treated this way. The OP CODE field is bits 1 to 5 and there are 32 labels each of 3 characters
to  distinguish  these  32 codes.  The characters  are  chosen to  convey the  name of  the  operation
mnemonically eg. ADD for add, SUB for subtract etc.

1 NOTE: in modern assembly languages it is more common to break up binary numbers into 4-bit fields, which are 
expressed as HEXADECIMAL digits, which are 0-9 and a-f for 10-15. This is appropriate for word lengths of 16, 
32 and 64 bits, which do not divide neatly by 3. In 1970, when BALAD was first implemented word lengths of 12 
and 18 bits were more common.



11

The indirect bit  of an instruction,  bit  6, is expressed with the symbol "@" if  the bit  is a 1. No
character implies bit  6 is  0. Numerical Memory references in an instruction may be written as
OCTAL numbers. Memory locations can also be labelled with an arbitrary text, which is an alias for
that  numerical  address.  These  labels  can  then  be  used  instead  of  absolute  OCTAL addresses
anywhere in the assembly code, where a Memory reference address is required. The advantage of
labels is, that code and data can be moved in memory without changing that code. Simply the value
expressed by a label is changed automatically in the symbol table during program assembly.

An address can also be defined as the address of the current instruction with the symbol “ .” (FULL
STOP). The . or a label can be followed by + or – followed by a decimal displacement to evaluate
an address.

To write a program or data block, the address of the first location must be defined. This is done with
the LOC or BLK pseudo instructions. LOC followed by an OCTAL, symbolic or relative address
defines the starting address of the block to follow. BLK followed by a DECIMAL displacement will
leave a block of memory locations initialized to 0. The next location follows the end of the block. 

When typing program code into the computer follow an address defined by LOC or BLK with the 3
character mnemonic of the operation code followed by at least one space and/or the @ symbol if the
memory reference is indirect.  Lastly type the memory reference of the instruction,  either as an
absolute OCTAL address, a symbolic address or a relative address using “.” optionally followed by
a simple displacement. If no memory reference is typed 0 is assumed which means the operation
refers to the Accumulator. Lastly type Enter, which will cause analysis of the instruction and cause
the next address to be typed on the screen, ready for more program input, unless the instruction
contained an error, in which case an appropriate error message will be output on the screen and the
previous  address  is  output  on the screen  again,  ready for  correct  input.  This  ensures  that  only
syntactically correct programs or data can be entered2.

Alternatively to writing a block of program statements, we can initialize a block of numerical data.
If the first  character of a new entry is numeric the rest  of the word must be filled by a single
number. For convenience, this number may be expressed as decimal, octal, hexadecimal or binary.
The convention for modern programming languages  is  that  a  number starting with 1 to 9 is  a
decimal integer. A number starting with 0 is interpreted as octal with only digits 0 to 7. A number
starting with 0x followed by digits 0 to 9 and a to f is interpreted as hexadecimal. A number starting
with 0b followed by digits 0 or 1 only is interpreted as binary. Only decimal numbers may be
preceded  by  an  optional  +  or  –  sign.  A number  followed  immediately  by  the  letter  l  or  L is
considered to be a 30-bit double-precision number using up two consecutive words.

Character strings are another form of constant that may be initialized during assembly. A character
string is entered into memory by typing a parenthesis symbol “ as the first character instead of a
statement or a number. Any character following except another parenthesis “ is regarded as another
character in the string. Strings may contain two control characters written as \n for new-line and
\t for tab (space to the next column of 8). A real “ character in a string is written as \” and a real
\ as \\.  A closing parenthesis terminates the string with a NULL byte. The following ENTER key
sets the next address to the word address after the end of the string.

 2.3.1 Comments

In all cases, before typing ENTER, zero or more spaces followed by “;“ or “#“ followed by any
text is a comment. For other variations, see the Debugging System.

2 This does not mean a program is semantically correct – the algorithm may not do what it is intended to do.



12

Here is a small BALAD program example:

######################################### 
#  Comment block 
######################################### 

LOC 10 ; initialized data block
op1: 99
op2: 81
sum: BLK 1 ; uninitialized data block

LOC 100 ; code block
main: CLR C ; clear Carry before addition

LDA op1
ADD op2
STA sum
PDN sum
HLT

This produces the following assembler listing when run with balad -l

######################################### 
#  Comment block
######################################### 

LOC 10 ; initialized data block
010 00143 op1: 99
011 00121 op2: 81
012 00000 sum: BLK 1 ; uninitialized data block3

LOC 100 ; code block
100 34777 main: CLR C ; clear Carry before addition
101 30010 LDA op1
102 22011 ADD op2
103 32012 STA sum
104 70012 PDN sum
105 00000 HLT

The first two columns are the 3 digit octal memory address and the 5 digit octal memory contents, 
which may be code instructions or data numbers or strings.

3 Any memory not specifically initialized by the assembler is set to 00000



13

 2.3.2 List of instructions in op code order

JMP ADR 
JMS 
JZR JEQ 
JNR JNE 

JZC JLT 
JNC JGE 
JEZ JLE 
JBN JGT 

AND 
ADD 
SUB 
CMP 

LDA 
STA 
CLR 
TST 

COM 
NEG 
INC 
DEC 

ROL 
ROR 
ASR 
SWP 

KDN 
KDD 
KCH 
KCS 

PDN TDN 
PDD TDD 
PCH TCH 
PRF TCS.

Table 1

Each 15-bit binary word can be expressed as a 5 digit OCTAL number. For instructions, the first
two digits  are  the  OP CODE,  which  is  written  in  assembler  code  as  a  three  upper  case  letter
mnemonic shown in the left-hand column. A 1 is added to the second digit if MR is indirect (@).
The  Memory  Reference  is  the  remaining  3  OCTAL  digits.  Some  op  codes  have  alternate
mnemonics useful for unsigned numerical comparisons with the CMP instruction.

CMP dest
JLT .+2 ; jump to .+2 if ACC < contents of location dest



14

 2.3.3 Data Formats

UNSIGNED
Integer  Number
or Logical Unit

SIGNED Number

DOUBLE
PRECISION
SIGNED Number

7  BIT  ASCII  
CHARACTER
or BYTE

CHARACTER  
STRING
A NULL character  
marks  the  end  of  
the string

Other Data formats can be devised and these are only limited by the programmers' ingenuity.

 2.4 HISTORY
The Balad system was developed in 1970 as an aid for teaching electronics technicians and their
teachers the basics of how a computer works internally. Even at that time, the RISC instruction set
and the use of 4 Accumulators in the Data General NOVA computer available to them in hardware
were  confusing  the  fundamental  simplicity  of  a  computer  based  on the  original  von Neumann
architecture. 

This is a much greater problem in the 21st century, with CPUs with very extended instructions sets
and a much greater reliance on higher-level languages, which hide what is happening inside the
computer. This very simple BALAD virtual computer should give students some insights into
how the very core of a computer works. The details can easily be taught in one 45 minute
lesson and from then on students can test their skills in manipulating machine instructions to
develop  higher-level  functionality,  like  a  multiply  routine,  which  is  not  part  of  the  basic
instructions  set. HINT:  a  very  simple  multiply  algorithm  is  to  add  the  multiplicand to  the
accumulator and decrement the multiplier in a loop. Terminate the loop when the multiplier is zero.



15

 3 THE BALAD ASSEMBLER
The BALAD assembler is always executed first in two-pass mode when BALAD is called with one
or more source file arguments. Two-pass mode means that the source(s) are read once to identify all
symbolic labels followed by a colon “:”, which builds a Symbol Table. Then the files are read a
second time and all instructions, numeric data and strings are converted into 15-bit machine code
and stored in the correct memory locations, ready to run. Any errors in the program are reported on
the console and in an optional listing file. If there are errors or the call is made with the -c option the
file(s) are only assembled. Otherwise, the assembled program is started at main: if there is a label
main – else the debugger is entered to allow starting the program manually with the r command.

balad george.bl

Linux  and  Unix  operating  systems  allow  automatic  starting  of  a  BALAD  program  when  the
following line is the first line of a program:

#!/usr/bin/balad

The file location /usr/bin/balad must contain the BALAD executable or a link to it. For this to
work your BALAD application source must first be made executable with:

chmod +x george.bl

Then  the  following  simple  call  will  assemble  and  start  the  program  automatically  without
mentioning balad:

george.bl

Any listing, help or debugging switches can follow that direct call.

 3.1.1 BALAD Help

When BALAD is called with the  -h option a Usage help output on the console describes all the
command  line  switches  and  file  parameters.  This  is  followed  by  a  detailed  description  of  the
Debugger commands. 

balad -h

Usage: balad[-lt[doxb]cmh
[ -L[ <list_file>]][ -O <out_file>]
[ -B[ <batch_file>]][ <file> …]

-l list code output during assembly
...

The user can also add his own help output to a BALAD program by terminating the normal code
and data with a line starting with __END__. Any text following this terminator is interpreted as a
help text, which can be displayed on the console with the BALAD call of the program followed by
the -h switch. The following program has such a help text:

george.bl -h

  Reverse Polish Notation Calculator 'GEORGE'
0-9 Enter a number terminated by white space or an operator,

at which point the number is pushed on the stack.
  ...

 3.1.2 Interactive Input Mode

If BALAD is called without any parameters at all, interactive input mode is entered, which allows
direct entry of BALAD labels, instructions and data from the keyboard. Each line is assembled as
soon as the Enter key is typed. This is a quick way to try out a short program. This program entry is



16

terminated with q on a line by itself, which causes entry into the debugger from where the newly
entered program can be run. Care must be taken to terminate code with an unconditional  JMP or
HLT instruction before entering data, going to a new memory location with LOC or BLK or quitting
interactive entry with q. Not doing so causes an Error message. Interactive input mode can also be
entered from the debugger with the e command. This makes it possible to change existing code or
enter extra code while debugging if the semantics of the program is not correct. The debugger also
allows single memory locations to be modified directly with the < command.

A program entered in interactive mode can be output to a file from the debugger with the O <file>
command. If the <file> chosen already exists you will be asked if you want to overwrite it. You
can also create a list file from the debugger with the  L <file> command.  Interactive mode is a
quick and easy way for students to try their hand with BALAD code, without having to learn to
enter code in a text editor. It was the only way that was available with the original 1970’s BALAD
version, which had a teleprinter as a terminal on a Data General NOVA minicomputer. Programs
could only be printed and saved on paper tape at 10 characters/second – there was no disc.

 3.1.3 Listing Options

Calling BALAD or a BALAD application with the -l switch will produce a complete listing of the
program. Each line of the program which generates a value for a memory location will be preceded
by the 3 digit octal address of that memory location and the 5 digit octal contents generated for that
location. The listing of the main part of the program george.bl starts as follows:

balad -l george,bl
                        LOC 100

  100   30023   main:   LDA stackA      ; top of stack - clear the stack
  101   32014           STA stackP      ; stack grows downwards towards 'expr'

                ########################################################################
                #  Get a new RPN expression string
                ########################################################################

  102   66700   loop:   KCS expr        ; grow expression upwards towards stack
  103   30022           LDA expADR      ; expr[] address
  104   32013           STA expPTR      ; word pointer first
  105   02373           JMS iniDig      ; clear digits, hexFl -1, decimal base, C
  106   00110           JMP .+2         ; skip first ROR - start with even byte of expr[0]

The listing output is useful for debugging. It correlates with the tracing output at breakpoints and
normal tracing. 

The listing can also be stored in a file specified with the -L switch. Normally a <listing_file> name
follows the -L switch. If no <listing_file> is specified the base name of the <source_file> with the
extension .bll is used. The -L switch should be put at the end of the command line, because if it is

put just before the <source_file> name that is assumed to be the listing file. The -- switch before the
<source_file>  marks  the  end  of  all  switches  and  fixes  this  also.  The  following  calls  are  all
equivalent:

balad -l george.bl -L
balad -l george.bl -L george.bll
balad -l -L george.bll george.bl
balad -l -L -- george.bl

A listing file can also be generated from the debugger with the L <file> command.



17

 4  THE BALAD DEBUGGER
The debugger is an integral part of the system, which is invoked with one of five command-line
switches, either alone or in combination. The  -t switch starts the debugger in  instruction tracing
mode. The normal debugger prompt is the current octal debugger location followed by >>.

balad -t george.bl
100 >>

The debugger can be in one of three modes with different prompts and individual commands:

• program is not running 100 >> r or e command allowed
• is stopped at a breakpoint 100 B> n s u c or a command allowed
• is stopped at a watchpoint 100 W> n s u c or a command allowed

The following additional commands work in all modes:
    O         output the source text to STDOUT
    O <file>   output the source text to <file>
    L         output the listing text to STDOUT
    L <file>   output the listing text to <file>
    S         output the Symbol Table         (sorted by symbols)
    Si        output the inverse Symbol Table (sorted by address)
    H         output the application Help text if any
    h         output the BALAD debugger help text
    q         QUIT balad

    *         set a BREAK or watch point at current location
    <n>*      set a BREAK or watch point at location <n>
    <n>,<m>*  set BREAK or watch points at locations <n> to <m>
    #         CLEAR all break or watch points
    .#        CLEAR a break or watch point at current location
    <n>#      CLEAR a break or watch point at location <n>
    <n>,<m>#  CLEAR break or watch points at locations <n> to <m>
    =         list all break or watch points
    <n>,<m>=  list break or watch points in range <n> to <m>
    < <code|data>     assemble <code> or <data> at current location
    <n> < <code|data> assemble <code> or <data> at location <n>
              this makes the modification of single locations possible

        List commands show an octal memory address and the contents
    /c        list current location as code
    <n>/c     list location <n> as code
    <n>,<m>/c list locations <n> to <m> as code
        Similarly list data in different list modes
    /d    short signed decimal       /D    long signed decimal
    /u    short unsigned decimal     /U    long unsigned decimal
    /o    short unsigned octal       /O    long unsigned octal
    /x    short unsigned hexadecimal /X    long unsigned hexadecimal
    /b    short unsigned binary      /B    long unsigned binary
    /s    text string up to next NULL
        these apply to all other commands starting at * (set a BREAK)
    / or enter    list location(s) in current list mode

    -t    trace code during execution.
      -d  additionally  trace C, ACC and MR in decimal
      -o  alternatively trace C, ACC and MR in octal
      -x  alternatively trace C, ACC and MR in hexadecimal
      -b  alternatively trace C, ACC and MR in binary
              In each case trace values before and after execution.
              Without -t trace only at break or watch points.
    -     stop tracing code and data during execution.



18

Memory addresses shown as <n> or <m> above can be entered in several ways:

• An octal number. The BALAD memory is only 512 words long, which makes 0 – 777 the
only valid addresses.

• A defined symbolic address followed by an optional + or – decimal offset. If the command
following a symbolic address is a letter it must be separated from the address by a space.

• The symbol “.“,  which stands for the current  location,  followed by an optional  + or –

decimal offset.
• Any of the above, preceded by the symbol @, which means the address is the contents of the

chosen location.
 4.1.1 Running a program

A program is started from the debugger with the  r command. Without a preceding address, the
program is started at the label  main:. If there is no such label the program is started at location
100, which is the default location where code is normally started. But it is safer to start with a
specific location preceding the r command in this situation.
100 >> 155r

Specifically start execution at location 155. The r command can only be called when a program has
not been running and stopped at a break or watch point.

 4.1.2 Instruction Tracing

When a program is run after starting with the -t switch, every instruction that is executed is traced
by  printing  the  address  and  then  the  instruction  code  as  an  octal  number  and  as  a  symbolic
assembler instruction.
balad -t george.bl
100 >> r 

100 ***** run ***** 
main: 100 30023 LDA stackA 

101 32014 STA stackP 
loop: 102 66700 KCS expr 
RPN: 

Other switches which start the debugger are -to, -td, -tx and -tb or without the tracing option as -o,
-d, -x and -b. Calling the program with -to or -o additionally traces the contents of the Carry and
Accumulator  as  well  as  the  Memory  Reference  address  of  the  current  instruction  [in  square
brackets]  and  the  contents  of  the  Memory  Reference  -  all  before  and  after  the  instruction  is
executed. Lastly, the binary values of the Jump Tester Carry register jC and Result register jR are
traced. The Jump Tester registers are the only output of the CMP and TST instructions. The values
of jC and jR influence subsequent conditional Jump instructions.
balad -to george.bl
100 >> r 

100 ***** run ***** 
main: 100 30023 LDA stackA C 0 ACC 00000 [023] 00776 ==> C 0 ACC 00776 [023] 00776  jC 0 jR 1 

101 32014 STA stackP C 0 ACC 00776 [014] 00000 ==> C 0 ACC 00776 [014] 00776  jC 0 jR 1 
loop: 102 66700 KCS expr C 0 ACC 00776 [700] 00000
RPN: 

The example shows how the first instruction  LDA stackA loads the stack address 00776 from
location  [023]  into  the  Accumulator,  which  was  previously  00000  and  stores  it  with  the  STA
stackP instruction in the stack pointer, location [014], which was also previously 00000.  Any
trace will stop when encountering an input instruction, which is the KCS instruction in this example
with the prompt  RPN: . Entering a value at the prompt and typing Enter will continue the trace.



19

Note: only the data before the instruction is shown for an input instruction, because the instruction
has not been fully executed yet. The trace data after execution is shown after typing Enter.

When  tracing  instructions  in  an  arithmetic  algorithm the  contents  of  the  Accumulator  and  the
memory reference can be shown as decimal numbers with the -td switch. For completeness these
contents can also be traced in hexadecimal with the -tx switch and binary with the -tb switch. The
tracing modes can be changed from within the debugger using the same mnemonics -to, -td, -tx and
-tb. In the debugger, the mnemonic - switches tracing off altogether. The tracing modes  -o, -d, -x
and  -b only  output  trace  data  just  before  and  just  after  the  occurrence  of  a  breakpoint or
watchpoint, which will be covered next.

 4.1.3 Breakpoints

Locations in a block of program code can be marked as a breakpoint. For this debugger, any number
of breakpoints can be set. Breakpoints are set with the * command. The following sets the current
location 100 as a breakpoint:
100 >> *
  100  *  30023   main:   LDA stackA
100 >>

Setting the breakpoint echoes the listing line of that instruction with a * symbol after the memory address to
show that a breakpoint has been set at that location. All subsequent listings will show that star until the
breakpoint has been cleared with the # command, which will clear all breakpoints:

100 >> #
  100     30023   main:   LDA stackA
100 >>

A list of all breakpoints can be output with the = command. Most debugger commands can be preceded by
an address or a range of addresses. The following sets breakpoints on 2 consecutive locations:

100 >> 103,104*
  103  *  30022           LDA expADR
  104  *  32013           STA expPTR
100 >>

Ranges are two addresses separated by a comma. The example shows the use of octal addresses but symbolic
addresses can also be used. One gets pretty used to octal addresses, which are available from any listing.

Breakpoints come into play when a program is executed. When the instruction at location 103, marked as a
breakpoint, is about to be executed the instruction and trace data (if one of the data-trace switches -o -d -x or
-b is set) is output followed by the prompt 103 B>

100 >> r
RPN: 5 6 +
  103 30022  LDA expADR   C 0 ACC 00776 [022] 00700
103 B>

This shows that we are about to execute the LDA expADR instruction at location 103 with the value
00700 in location [022]. The most common command at a breakpoint is to continue execution to
the next breakpoint, which is the c command:
103 B> c
                                                          ==> C 0 ACC 00700 [022] 00700  jC 0 jR 1
        104 32013  STA expPTR   C 0 ACC 00700 [013] 01601
104 B>

The first  output  after  the  c command is  the  trace  values  after  execution  of  the  just-completed
breakpoint instruction. That shows that the value 00700 from location [022]has indeed been loaded
into the Accumulator. The next breakpoint is at location  104, which again shows the appropriate
trace information before executing that instruction. If no breakpoint had been set at location  104,
the same effect would have been achieved with the step command s, which causes a break at the



20

very next instruction, even if that instruction steps into a subroutine. Alternatively, the n command
breaks at the next instruction but will step over subroutine calls – treating the JMS instruction as if
it  were  just  one  machine  instruction.  Once  inside  a  subroutine,  the  u command  will  continue
execution in that subroutine  until it leaves that subroutine. The  abort command  a will take the
system from a breakpoint to the  not running state with the  >> prompt, effectively stopping the
program and returning to normal debug mode.

 4.1.4 Watchpoints

Watchpoints are very similar to breakpoints, but their operation during the execution of a program is
slightly  different.  Watchpoints  are  also  set  with  the  * command,  but  instead  of  marking  an
instruction,  a  data  location  is  marked.  Such  a  data  location  is  normally  not  executed  as  an
instruction,  which means it  is  not  a breakpoint.  Instead,  data  locations are read and sometimes
modified by different instructions. Each time this happens for data at a watchpoint location (marked
by a *) a trace line for the instruction referencing that data is output with the word watch appended.
When the data is modified, execution of the program stops and the debugger is re-entered with the
watchpoint  prompt  502 B>. The address shown is the address of the instruction whose memory
reference  location  is  being  watched.  Unlike  with  a  breakpoint,  the  instruction  must  be  fully
executed before it can be determined that a modification of the data has occurred. The following
example shows a watchpoint in operation on a variable sign:
100 >> sign*
        012  *  00000   sign:   0
100 >> r
RPN: 3 4n +
  502 32012  STA sign     C 0 ACC 00000 [012] 00000 ==> C 0 ACC 00000 [012] 00000  jC 0 jR 0  watch
  505 26012  CMP sign     C 0 ACC 40000 [012] 00000 ==> C 0 ACC 40000 [012] 00000  jC 1 jR 1  watch
  507 44012  INC sign     C 0 ACC 40000 [012] 00000 ==> C 0 ACC 40000 [012] 00001  jC 0 jR 1  watch
012 W>

For the first two instructions at 502 and 505, the value at sign [012] has not changed. The INC
sign instruction  at  location  507 does  change  sign from  00000 to  00001,  thus  causing  a
watchpoint break. Intermediate instructions operating on other memory reference locations are not
traced unless in full tracing mode with the -t switch. 

This  particular  watchpoint  on  the  variable  sign allowed  me  to  find  a  subtle  bug  during  the
development of the Reverse Polish Notation Calculator GEORGE.  sign is used in four different
subroutines  add,  sub,  mul and  div,  which execute the arithmetic  operations in the calculator.
sign is used to adjust the result of these double-precision operations. I had forgotten that I also
called sub in the div routine. This led to the value of sign for the div result being altered by the
embedded call to sub, leading to erroneous results. The use of a watchpoint on sign showed the
change in sign in the routine sub during the execution of div very clearly.

To continue from a watchpoint the same commands n s u or c as for breakpoints are used.

The way breakpoints and watchpoints work in BALAD are similar to their functionality in other
assembler  and  higher  level-language  Debuggers  and  Integrated  Development  Environments.  In
particular, these other Debuggers all use the letters  n,  s,  c and  u as keyboard accelerators for the
next, step, continue and until operations. Thus learning to debug simple programs or algorithms in
BALAD should be a good learning experience for using Debuggers with other language systems.
The main skill in debugging is seeing how variables vary by setting appropriate breakpoints and
interpreting the values in the accumulator and the instruction memory reference locations. Other
locations can be listed at any time in different list modes, which will be discussed next.



21

 4.1.5 Listing or viewing memory locations

Memory locations or groups of memory locations in any computer are fixed-length bytes or words,
which are identified by an address. In BALAD the word length is 15 bits. The interpretation of
memory words depends on which part of the computer is accessing a particular memory location.
There are three main ways of interpreting computer memory and several sub-categories:

 1. Instructions. In BALAD these are very regular consisting of a three upper-case letter op-
code followed by an optional ‘@’ symbol and then an octal or symbolic memory reference.

 2. Numbers. These may be 15-bit single-precision integers or 30-bit double-precision integers.
BALAD instructions can only work directly on single-precision numbers, but many function
algorithms deal with double-precision numbers, which makes it useful to be able to list pairs
of  memory  locations  as  double-precision  numbers  while  debugging.  Numbers  may  be
interpreted as signed or unsigned.  The ‘-’ can only be displayed with a decimal  output.
Numbers can also be displayed as octal  numbers, which are identified by a leading ‘0’,
hexadecimal numbers with a leading ‘0x’ and binary numbers with a leading ‘0b’. All octal,
hexadecimal and binary numbers are displayed as unsigned. If signed the first bit of these
numbers is the sign bit. Other computers also have floating-point numbers, which are not
supported  by  BALAD.  In  principle  a  group  of  functions  to  carry  out  floating-point
arithmetic  is  feasible,  but  the  amount  of  memory  available  in  this  implementation  of
BALAD is not sufficient to do it. So the debugger does not support them either.

 3. Strings. In BALAD strings are stored two 7 bit ASCII characters per word, terminated by a
zero or NULL byte. Strings are variable-length data structures.

The debugger command to start a list of one or more memory locations is  /. The / is optionally
preceded by a memory address (octal,  symbolic or relative).  The  / is optionally followed by a
single letter list mode, which determines how this location or group is to be interpreted:

    /c    list current location as code

    /d    single-precision or short signed decimal
    /u    single-precision or short unsigned decimal
    /o    single-precision or short unsigned octal
    /x    single-precision or short unsigned hexadecimal
    /b    single-precision or short unsigned binary

    /D    double-precision or long signed decimal
    /U    double-precision or long unsigned decimal
    /O    double-precision or long unsigned octal
    /X    double-precision or long unsigned hexadecimal
    /B    double-precision or long unsigned binary

    /s    text string up to next NULL

A subsequent  / command or  an Enter  without  a  command – either  optionally preceded by an
address or address range will list memory locations in the most recently used list mode.
100 >> main,loop /c
  100   30023   main:   LDA stackA
  101   32014           STA stackP
  102   66700   loop:   KCS expr
103 >> /
  103   30022           LDA expADR
104 >> 



22

Here  we inspect  the  contents  of  stackP,  which  is  a  memory  address  where  double  precision
numbers are stored in the GEORGE RPN calculator:
776 >> stackP/o
  014   00774   stackP:   0774
015 >> @stackP/O
  774   04000             025004000
  775   00250
776 >> @stackP/D
  774   04000              5507072
  775   00250
776 >>  

The @stackP address uses the contents of  stackP as the location to display the two-word octal
number. The next display shows the number as a decimal. As with all listing modes, the 5 digit octal
memory value for each word is also shown as well as any labels.

 4.1.6 Modifying memory locations

An important aspect of debugging is being able to modify the contents of memory locations, either
before a program is run or at a break or watchpoint. The debugger command to do this is <. Any
text after the < command is passed to the assembler to interpret and convert the input to a correct
binary value to store in the memory location preceding the < command. That location may be the
current location if no new address is typed, an octal or symbolic address or a range, which will all
be modified with the same value. Values passed may be BALAD instructions if modifying code,
numerical short or long numbers (double precision numbers have a trailing l or L) in any of the
input bases – decimal, octal, hexadecimal or binary. When modifying a string with a new “string”
several words may be involved, which can be tricky. In all cases, the first line of output shown after
the < command is a listing of the previous contents, which is followed by the assembly line of the
new contents. No listing mode letter  may follow a  < command. The temporary listing mode is
determined by the type of value to be assembled – code, number or string.
111 >> 103<LDA expPTR
  103   30022           LDA expADR
  103   30013   LDA expPTR
104 >> 770<55
  770   00041               33
  770   00067   55
771 >> 772<1234567L
  772   00041             1081377L
  773   00041
  772   53207   1234567L
  773   00045
774 >> 720<"Hello world\n"
  720   00000                   ""
  720   62510   "Hello world\n"
  721   66154
  722   20157
  723   67567
  724   66162
  725   05144
  726   00000
727 >>

 5 “GEORGE” a Reverse Polish Notation Calculator

To show the  power  of  the BALAD computer,  I  developed the program  GEORGE  (george.bl),
which is a complete implementation of a Reverse Polish Notation (RPN) Calculator for double-
precision integer arithmetic (30-bit precision). I did this with two aims in mind:



23

1. To demonstrate what can be done with a minimal Turing complete instruction set computer
and limited memory of 512 words (1024 bytes). Most of the demonstration programs I have
supplied are toy programs to demonstrate various aspects of the instruction set. george.bl is
a full  application with many of the capabilities of the calculator  dc developed for early
UNIX systems and still available for Linux (dc is a reverse-polish desk calculator which
supports unlimited precision arithmetic). Other well-known RPN calculators are the  HP-
42S Scientific calculator introduced in 1988 and PCalc available on iPads and other mobile
devices, which has an RPN mode. The main limitation of  george.bl compared with these
systems is the lack of floating-point arithmetic and the ability to use named variables. Only
the lack of memory stops one from adding these capabilities.

2. To show 21st-century  students  how computer  languages  developed  in  the  early  days  of
computing and the importance of the stack concept in computer languages. Charles Leonard
Hamblin was the professor of philosophy at the NSW University of Technology, which later
became the University of NSW in 1955. Among his most well-known achievements in the
area  of  computer  science  was  the  introduction
(some  sources  also  say  invention)  of  Reverse
Polish Notation and the invention of the stack in
computing. This was arguably independent of and
about  the  same  time  as  the  work  of  Friedrich
Ludwig  Bauer and  Klaus  Samelson on  the
invention of the push-pop stack. In the second half
of the 1950s, he became active with UTECOM, the
third computer available in Australia, which was a
DEUCE  computer  produced  by  the  English
Electric company. DEUCE was based on the ACE
computer  which  Alan  Turing  had  designed.  For
UTECOM  Charles  Hamblin sketched one of  the
first  programming  languages,  GEORGE,  which
was based on  Reverse Polish Notation,  including
the  associated  compiler  (language  translator),
which translated the programs formulated in GEORGE into the machine language of the
computer.  In  1957  the  GEORGE  compiler  was  operational  and  I  had  the  pleasure  of
attending  Charles  Hamblin’s philosophy  lectures  during  the  early  part  of  my  Electrical
Engineering studies at UNSW. He explained the workings of GEORGE to us and the use of
Reverse Polish Notation. I wrote my first computer program in this language and had it run
on this very large machine. An incidental memory I have of that computer run was being
allowed to take a pocket full of vacuum tubes out of a bucket – they had been discarded as
being below specs. I used them to make radios at the time.

About a year later  Friedrich Ludwig Bauer, Klaus Samelson and Peter Naur specified the
computer language ALGOL58, which also used push-pull stacks for variable manipulation
and subroutine nesting – a strategy which has been maintained via PASCAL and C through
to all modern computer languages.

Here are some extracts from the original GEORGE Programming and Operation Manual.

GEORGE, or the ‘General Order Generator’, is a program for DEUCE permitting mathematical
problems to be presented to the machine in a simple “address-less” instruction language, here
called  “G-Code”.  To  use  this  code  the  programmer  must  learn  a  special  method  of  writing
mathematical  formulae,  known  as  “reverse  Polish”  notation.  Once  this  is  mastered,  however,



24

programming is considerably easier and quicker than by other methods. “G-Code” is a highly
simplified and  condensed  instruction  language.  The  program  in  G-Code  in  fact  resembles a
mathematical formula for the result required more than it does an orthodox machine program. In
particular, the programmer never has to specify any “addresses” for numbers or instructions inside
the machine.

As  written,  a  program  in  G-Code  is  a  sequence  of  mathematical  symbols such  as  numerals,
variables  and arithmetical  and other  special  signs;  the  symbols  are  transcribed to  cards  in  a
numerical code (on today’s computers a program is stored in a file in ASCII code – which is also a
numerical  code).  Broadly,  each symbol  may be regarded as  an individual  “instruction” of  the
program.

 5.1 PROGRAMMING GEORGE

 5.1.1 Reverse Polish Notation

The majority of the symbols used in programming are those normally used in mathematics, but the
order in which they occur is different from the usual order: formulae are written in “reverse Polish”
notation. This notation has several advantages which fit it for use with machine computation.

In this preliminary description let us take for granted that we can use the letters “a”, “b”, “c”, … as

ordinary algebraic variables. A mathematical formula is a prescription for operating on the numbers
such variables represent.

IMPORTANT NOTE for the BALAD implementation george.bl: variables in formulae have
not been implemented because of lack of memory. Integer numbers are put directly into the
formulae, which are then executed just like the 1957 version of GEORGE.

We can classify the operators involved as:

i. monadic   operators, or operators on a single number, such as the minus-sign in “-a”.

ii. dyadic   operators,  or operators on a  pair  of numbers,  such as the operators for addition,
subtraction, multiplication and division.

In ordinary mathematical notation, a monadic operator is most frequently written  in front of the
number concerned,  as  in  “-5”,  and a  dyadic operator  between two numbers,  as  in  “7 + 9”.

Because the sign “-” is used indifferently for subtraction and as a minus-sign (subtraction from

zero), brackets are needed to distinguish, say, “-4 + 6” and “-(4 + 6)”.

In reverse  Polish  notation  the  operator-signs,  whether  monadic  or  dyadic,  are  written  after  the
numbers concerned, as follows:

For 7 + 9 write 7 9 +
 “ 7 – 9  “ 7 9 -
 “ 7 * 9  “ 7 9 *
 “ 774 / 9  “ 774 9 /
 “ -5  “ 5 n and so on.

One result of this is that brackets are never needed: any of the above expressions may be used
directly and without ambiguity as an element in a longer expression. For example:



25

For -(7 + 9) write 7 9 + n
 “ 7 + 9 + 15  “ 7 9 + 15 +

            or 7 9 15 + +
 “ (7 + 9) * 15  “ 7 9 + 15 *
 “ 7 + 9*15  “ 7 9 15 * +
 “ 7*9 + 15/3  “ 7 9 * 15 3 / +

In understanding the use of this notation in GEORGE it will be of assistance to have in mind a
picture of the internal logic of operation. The pseudo-machine into which DEUCE (BALAD in our
case) is converted by the basic GEORGE program can be envisaged as equipped with a “running
stack”: this is a set of storage locations (known as “cells”) arranged in linear order and operated on
the  “last-in-first-out”  principle.  When  a  number  occurs  in  a  program,  its  “value”,  as  a  binary
number, is placed in the first vacant cell of the stack, i.e. in cell 1 if this does not already contain a
number, otherwise in cell 2 etc.: and when an operator-symbol occurs, the specified operation is
carried out on the contents of the  last occupied cell or the  last two occupied cells, depending on
whether the operator is monadic or dyadic. The operation of the formula “a b +” may for example
be pictured as follows:    (I am using variables “a” “b” “c” of the original GEORGE handbook,
which have to be numerals for the BALAD version george.bl)

i. “a”: number is transferred to cell 1.

ii. “b”: number is transferred to cell 2.

iii. “+”” contents of last two occupied cells added together; cells cleared and result replaced.

The result is exactly the same as if a single number, the sum of  a and  b, had been specified. In

consequence, this number is available for further operations if required. For example to calculate
“(a + b) * c” we can write “a b + c *”. The first three steps are as above, after which:

iv. “c”: number c is transferred to cell 2.

v. “*”: contents of last two cells multiplied; cells cleared and result replaced.

Alternatively,  this  calculation  could  have  been
carried out in the form “c a b + *”. In this case, three cells would first have been filled with



26

numbers before any calculations were carried out: the result of the addition would go into cell 2,
and the final result as before into cell 1.

Quite generally, the overall effect of any calculation of a number is to place the number concerned
in the first vacant cell of the stack.

 5.1.2 Other Operators

There are two special operators which, although not strictly necessary, are frequently useful:

i. “  dup” this “duplicates” the contents of the last cell of the stack in the next cell. In george.bl

duplication is executed by “E” the Enter operation in conformity with HP-42S and PCalc.

For (a + b)2    write   a b + dup *    or for   george.bl    9 7 + E *

ii. “rev”  this  “reverses” (i.e.  interchanges)  the contents  of  the last  two occupied  cells.  In

george.bl “rev” is executed by “S” for Swap in conformity with HP-42S and PCalc.

For    a + b + c / (a + b)   write    a b + dup c rev / + 

or for    george.bl   9 7 + E 100 S / + 

iii. “n” is negate in george.bl instead of “neg” in GEORGE.

iv. “(a)” in GEORGE means store the contents of the last cell in variable a. Since george.bl

has no variables, it has no such operator.

The following useful stack manipulation operators from HP-42S and PCalc were not available in
GEORGE but have been implemented in george.bl:

v. “R” for Roll. Move the last cell on the stack to the first cell of the stack after moving all

other cells across one position.

vi. “D” for Drop. Free the last cell on the stack, making it available for a new number.

vii. “C” for Clear the whole stack. This allows starting a new set of calculations.

White space, which is a SPACE, a TAB or a CR (enter) character, as well as any other operator
(including E) immediately after entry of a new number, will push that number on the stack. Only
then is the operation executed if it was an operator. After that white space is ignored until a new
number is entered and further operators carry out their function on numbers already on the stack.

Numbers in  george.bl can be input and output in different bases, namely decimal, octal (base 8),
hexadecimal (base 16) and binary (base 2). This is a very useful feature for supporting machine-
level programming to do address arithmetic. Assemblers (including the BALAD assembler) present
memory addresses and their contents either in octal or hexadecimal. Binary presentation is useful
for bit manipulation. All the calculators which served as a model for george.bl, namely dc, HP-42S
and PCalc have input and output in the four number bases.

For  george.bl the  format  of  different  base  numbers  follow  the  strategy  of  modern  computer
languages like C and Perl:



27

• A number starting with 1-9 followed by digits 0-9 is decimal.

• A number starting with 0 followed by up to 10 digits 0-7 is octal.

• A number starting with 0x followed by up to 8 digits 0-9 and a-f is hexadecimal.

• A number starting with 0b followed by up to 30 digits 0 and 1 only is binary.

Numbers may only be integers. Therefore no decimal point is allowed. The result of a calculation is
shown in decimal at the end of a reverse Polish expression string. Normally there is only one result,
but some expression strings leave values on the stack. For this reason, the whole of the current stack
is output at the end of the expression string. For debugging your reverse Polish expression this
information is very useful. Most calculators only show the last value on the stack or at most the last
two values. The ability to see the whole stack was a feature I always wanted.

george.bl has four extra operators to output numbers in the different bases. These are d for decimal,

o for  octal,  x for  hexadecimal  and  b for  binary.  These  operators  can  be put  at  the  end of  an

expression, in which case the result will be shown in the requested number base. The operators d, o,

x and b serve a dual purpose. They can also be placed more than once in the middle of a reverse

Polish expression. This has the effect that each time one of these display operators occur in the
expression  the  stack,  as  it  is  at  that  point  of  the  expression  evaluation,  will  be  output  in  the
requested  base.  On top  of  that,  if  the  display  operator  is  not  at  the  end of  the  expression  the
remainder of the expression will be output after the stack results. The net result is a tracing feature
for debugging more complicated reverse Polish expressions. Let me demonstrate this feature with
an example taken from the original GEORGE handbook:

To evaluate e = ay2 + by + c, one wrote a y dup × × b y × + c + (e).
For values of a = 15, y = 30, b = 12 and c = 45 the george.bl RPN expression is:
           15 30 E E R * * R 12 * + 45 +      which evaluates as follows:
RPN: 15 30 E E R * * R 12 * + 45 +
 13905

With extra trace output d before every value input and operator the output is as follows:
RPN: 15 d30 dE dE dR d* d* dR d12 d* d+ d45 d+
 15             30 dE dE dR d* d* dR d12 d* d+ d45 d+
 15 30          E dE dR d* d* dR d12 d* d+ d45 d+
 15 30 30       E dR d* d* dR d12 d* d+ d45 d+
 15 30 30 30    R d* d* dR d12 d* d+ d45 d+
 30 15 30 30    * d* dR d12 d* d+ d45 d+
 30 15 900      * dR d12 d* d+ d45 d+
 30 13500       R d12 d* d+ d45 d+
 13500 30       12 d* d+ d45 d+
 13500 30 12    * d+ d45 d+
 13500 360      + d45 d+
 13860          45 d+
 13860 45       +
 13905

A similar effect can of course be achieved by entering every input value and operator on a separate
line, but the output is not quite as compact and informative:

RPN: 15
 15
RPN: 30



28

 15 30
RPN: E
 15 30 30
RPN: E
 15 30 30 30
RPN: R
 30 15 30 30
RPN: *
 30 15 900
RPN: *
 30 13500
RPN: R
 13500 30
RPN: 12
 13500 30 12
RPN: *
 13500 360
RPN: +
 13860
RPN: 45
 13860 45
RPN: +
 13905

 5.2 The overall strategy of GEORGE
It is important to remember that computers in the ‘50s like UTECOM were mainly seen as Number
Crunchers – in other words evaluating numerical formulae. Up till then, the word  computer had
been a job description for workers, whose job it was to compute numbers for such projects as the
dimensions of beams for building sites or statistical projections for businesses using pencil and
paper with mechanical calculators as the only aid.

I did such a project with my father, who was a lecturer in Mechanical Engineering at UNSW. He
had undertaken to produce a chart for selecting suitable steel tubes from those produced by the
company Tubewrights in Port Kembla for use as columns for building projects. It was known that
long columns fail by buckling. A Swiss mathematician named Leonhard Euler (1707 –1783) was
the first to investigate the buckling behaviour of slender columns within the elastic limit of the
column’s material. Euler’s equation shows the relationship between the load that causes buckling of
a (pinned end) column and the material and stiffness properties of the column. The critical buckling
load can be determined by the following equation.

Pcritical = π2EImin/L2

where
Pcritical = critical axial load that causes buckling in the column (pounds or kips)
E = modulus of elasticity of the column material (psi or ksi)
Imin = smallest moment of inertia of the column cross-section (in2)

(Most sections have Ix and Iy; angles have Ix,Iy and Iz.)
L = column length between pinned ends (inches)



29

The chart my father made showed a curved line for
each type of tube with load in pounds on the Y-
axis and length in inches on the X-axis. For a tube
to be suitable as a column the point of intersection
of load and length had to be below the line for that
tube on the chart. For each of about 50 types of
tube, we had to compute 200 points, which meant
10,000 evaluations of Euler’s equation. At the time
I had just done my exercise with GEORGE on the
UTECOM computer.  My father tried to get time
on UTECOM for his project, but it was rejected.
So  we  worked  for  a  fortnight  with  a  large
notebook and a FACIT mechanical calculator to do
these 10,000 computations.

It was not until the 60’s that computers started getting away from solely number crunching, because
now they were byte-oriented, which made it much easier to do text manipulation. At the time it was
realized that a larger proportion of actual computing time was being spent on manipulating text
rather than on crunching numbers. Particularly compilers are very text-oriented.

But in 1957 this was not so. UTECOM was a general-purpose vacuum-tube digital computer, with a
serial organization and a 1Mhz clock rate. The word size was 32 bits, and the machine's arithmetic
units  were capable of performing single,  double,  and mixed-precision binary integer arithmetic.
Negative values were held in two's complement form. A hardware unsigned integer multiplier and a
signed integer  divider  were included.  Its  primary memory consisted of 12 mercury-filled delay
lines. These were "folded" with a quartz crystal transmitter and receiver at the top and a pair of
acoustic mirrors at the bottom. Each delay line circulated 32 words of 32 bits each, making a total
of 384 words (1536 bytes).  Of the 384 words, 256 words (1024 bytes) were used for program
memory and 128 words for data memory. This means that the program memory was of similar size
as the BALAD memory of 512 x 15-bit words (1024 bytes). UTECOM just had an extra 50% of
data memory, which made the storage of variables and other extras possible.



30

The overall strategy of GEORGE was to use the UTECOM library functions add, subtract, multiply
and divide to do the actual arithmetic. But first GEORGE programs, coming in via punched cards,
had to be compiled, either directly into machine code, or later into code, which was executed by an
interpreter, which was more flexible and allowed calling more functions, like LOG and SINE.

george.bl uses the latter strategy, which will be looked at in detail in the next section.

 5.3 Analysis of the BALAD implementation george.bl
The core of the RPN system are the five subroutines add,  sub,  mul, div and negate, which
carry out signed double-precision integer arithmetic (very similar to the capabilities of UTECOM).
The double-precision unsigned multiply function mult is used to multiply the value of incoming
numerical digits to binary by multiplying them by the number base. It is also used to implement the
signed double-precision function  mul.  These basic functions are supplemented by the functions
push and pop, which implement a stack for double-precision numbers. Another stack function is
showSt, which is called in two places to display the whole stack.

The  program  is  very  short  on  available  memory,  so  manual  optimization  was  undertaken  to
eliminate any groups of code that were duplicated and replace them with subroutines, which are
called instead of executing duplicated code.

 5.3.1 Variables and Constants

LOC 0 and  LOC 1 are  the  Accumulator and  its  extension  for  double-precision values.  These
locations are predefined with the label ACC and ACC+1. The following double-precision variables
dest, src and  rem are initialized with the double-precision constant  0L. The variables  src,
lambda and  savACC are shared in a number of different routines for quite different purposes.
Great care must be taken when doing this, that the variables can be safely shared. The remaining
variables carry global states and cannot be shared.

Variables whose contents start with the pseudo-operator  ADR hold the address of other locations.
expADR holds the start of the locations where RPN expressions are stored and stackA holds the
top of the  stack. A special case is  funPAd, which hold the indirect address  ADR @funAdr,
which points to the array funAdr containing the four function pointers add, sub, mul and div.
The rest are character constants for identifying operators, number constants and character strings.

 5.3.2 Main Program

The first thing done in the main program is to initialize the stack. This point is also looped to when
executing the Clear instruction “C”.
  100 30021 main: LDA stackA ; top of stack - clear the stack
  101 32013 STA stackP ; stack grows downwards towards 'expr'

Then we fetch a new RPN expression string:
  102 66704 loop: KCS expr ; grow expression upwards towards stack
  103 30020 LDA expADR ; expr[] address
  104 32012 STA expPTR ; word pointer first
  105 02407 JMS iniDig ; clear digits, hexFl -1, decimal base, C
  106 00110 JMP gettok+1 ; skip first ROR - start with even byte

We loop to this point every time the execution of the previous RPN expression is finished. The KCS
instruction reads a character string from the keyboard (or from a batch file with STDIN). Next, the
expPtr is initialized with the word address of the first character [0] of the RPN expression. This
pointer is later turned into a byte pointer, which is incremented to point to the next character. To do



31

this with the BALAD instruction set the byte pointer is right-shifted and if the Carry is one, the
bytes in the word are swapped with the SWP instruction. The subroutine iniDig (which is called
in several other places) resets the counter  digits, which counts the digits as a number is built
from a series of input digits. When digits is zero no new number has been built yet. hexFl is
used  in  hexadecimal  conversion  and  asBase is  set  for  decimal  conversion.  Lastly  the  Carry
register  C is set to zero. This is important for subsequent additions and subtractions. The initial
entry into the gettok loop skips the initial ROR instruction.

The following loop picks up consecutive character tokens for numerical digits, operators and white
space:
  107 52012 gettok: ROR expPTR ; change to word pointer and Carry
  110 31012 LDA @expPTR ; two bytes from the expression
  111 10113 JZC .+2 ; skip SWP for even bytes
  112 56000 SWP ACC ; swap bytes for odd bytes
  113 50012 ROL expPTR ; change to byte pointer
  114 44012 INC expPTR ; increment expression byte pointer
  115 20063 AND C177 ; mask to 7 bit character from expression

String characters are stored two to a word and the code above picks those up in consecutive order.
Finally, the word is masked with AND C177 to leave just the character in the word accumulator for
comparisons. Next, we check whether the input character is a numerical digit, by comparing with
ASC_0 and  asBase whose initial value is for decimal conversion.
  116 26036 CMP ASC_0 ; "0"
  117 10160 JLT notDig
  120 26017 CMP asBase ; "9"+1, "8", "2", "f"+1
  121 12160 JGE notDig

If the character lies outside this range it is not a numerical digit and the program jumps to notDig.
The  code  up  to  num1: is  mostly  concerned  with  setting  up  octal,  hexadecimal  or  binary
conversion,  whose  workings  are  left  as  an  exercise  for  the  reader.  In  each  case,  the  variable
inBase is set to 10, 8, 16, or 2 and temporarily saved in savACC.
  132 24036 digFd: SUB ASC_0 ; convert ascii to binary 0 - 9
  133 32011 convrt: STA savACC ; save accumulator

  134 36014 TST digits ; is this the first digit ?
  135 06151 JNR num1 ; no
  136 34002 CLR dest ; yes - first digit
  137 34003 CLR dest+1 ; clear DP result for new number

The actual code to do character string to binary conversion is the following:
  151 44014 num1: INC digits ; number is growing
  152 30016 LDA inBase ; 10, 8, 16 or 2
  153 32004 STA src ; multiplier
  154 34005 CLR src+1 ; multiplicand dest is previous number
  155 30011 LDA savACC ; restore accumulator - new binary digit
  156 02572 JMS mult
  157 00107 JMP gettok ; get next digit or next operator

A double-precision binary number is generated from the next numerical digit by first multiplying
the previously built number’s low and high part by inBase (usually 10) and then adding the binary
value of the new digit. The result is stored in dest and dest+1.

The code from notDig to  notNum checks for  x or  b after an initial  0 to detect  0x or  0b, the
leading markers for identifying hexadecimal or binary numbers. 



32

Then the RPN token in the ACC is tested for the operations “q”, “C” or “E”, which are executed,
even if no new number has been pushed on the stack.
  202 26055 notNum: CMP ASC_q ; "q"
  203 04077 JZR errMsg+3 ; quit the program

  204 26042 CMP ASC_C ; "C"
  205 04100 JZR main ; Clear the stack

  206 26044 CMP ASC_E ; "E"
  207 06214 JNR tstNum

  210 02421 JMS push ; Enter or duplicate number on stack
  211 02407 JMS iniDig ; clear digits, hexFl -1, decimal base, C
  212 34406 CLR showFl ; show stack after pushing a new number
  213 00107 JMP gettok

For all other operators push a newly built number if a new number has been built. This includes
white space, which is otherwise ignored.
  214 36014 tstNum: TST digits ; has a number been built ?
  215 04221 JZR noNum ; no - no new number

  216 02421 JMS push ; yes - push the new number
  217 02407 JMS iniDig ; clear digits, hexFl -1, decimal base, C
  220 34406 CLR showFl ; show stack after pushing a new number

  221 30022 noNum: LDA funPAd ; address of function pointer array funAdr
  222 32010 STA lambda ; funAdr[0] add (shared)
  223 30011 LDA savACC ; restore accumulator
  224 04374 JZR expEnd ; end of expression - show result

; unless just shown with 'd' 'o' 'x' or 'b'
  225 26027 CMP space
  226 04107 JZR gettok ; ignore white space
  227 26030 CMP tab
  230 04107 JZR gettok

Now we come to call the arithmetic functions add, sub, mul and div, which are the main reason
for having a calculator. They have all been designed to have a similar calling strategy namely to pop
two values from the stack, the first to the double-precision variable  src and the second to the
double-precision variable dest. Rather than repeat this for each of the four arithmetic functions, it
is done once at execOp. Leading up to this is a short section, which generates the values 0, 1 2 or 3
in the shared variable mulplr depending on whether the current operator is “+”, “-”, “*” or “/”.
  231 34406 CLR showFl ; all other tokens force showing the stack

; funAdr[0] add
  232 26032 CMP addOp ; "+"
  233 04261 JZR execOp
  234 44010 INC lambda ; funAdr[1] sub
  235 26033 CMP subOp ; "-"
  236 04261 JZR execOp
  237 44010 INC lambda ; funAdr[2] mul
  240 26034 CMP mulOp ; "*"
  241 04261 JZR execOp
  242 44010 INC lambda ; funAdr[3] div
  243 26035 CMP divOp ; "/"
  244 04261 JZR execOp



33

Check for function negate, which has only one parameter dest popped from the stack.
  245 26047 CMP ASC_n ; "n"
  246 06252 JNE test_r
  247 02431 JMS pop ; n negate last value on the stack
  250 02460 JMS negate ; DP negate destination
  251 00270 JMP pushDs ; push result from dest and dest+1

The arithmetic function div produces a remainder, which can be pushed on the stack with “r”.
  252 26050 test_r: CMP ASC_r ; "r"
  253 06272 JNE test_D
  254 30006 LDA rem ; get remainder of latest div
  255 32002 STA dest
  256 30007 LDA rem+1
  257 32003 STA dest+1
  260 00270 JMP pushDs ; push result from dest and dest+1

At this point, we pop  src and  dest and call one of the subroutines  add,  sub,  mul or  div,
namely the one whose pointer is in lambda. The address is a double indirect, which is not often
used but is a very useful feature of the BALAD instructions set. This computed call of a subroutine
is similar to  Lambda functions in Python, which are used in various Python implementations of
reverse  Polish  calculators.  Lambda functions  are  called  anonymous functions  in  Python,  i.e.
functions without a name.
  261 02431 execOp: JMS pop ; popped value to src and src+1
  262 30002 LDA dest
  263 32004 STA src
  264 30003 LDA dest+1
  265 32005 STA src+1
  266 02431 JMS pop ; popped value is in dest and dest+1
  267 03010 JMS @lambda ; execute the selected op add sub mul div

All six arithmetic functions return their double-precision result in  dest and  dest+1, which is
pushed back on the stack.
  270 02421 pushDs: JMS push ; push result from dest and dest+1
  271 00107 JMP gettok ; next token

Three stack manipulation operations follow.
  272 26043 test_D: CMP ASC_D ; "D"
  273 06276 JNE test_S
  274 02431 JMS pop ; Drop last value on the stack
  275 00107 JMP gettok

  276 26046 test_S: CMP ASC_S ; "S"
  277 06303 JNE test_R
  300 30013 LDA stackP ; Swap last two numbers on the stack
  301 22060 ADD D4
  302 00306 JMP swpNow

  303 26045 test_R: CMP ASC_R ; "R"
  304 06337 JNE test_d
  305 30021 LDA stackA ; Roll last number on stack with top of stack

Drop simply pops the last number on the stack. This is equivalent to clearing the last number entry.

Swap  and  Roll  share  a  common  execution  strategy.  The  only  difference  is  the  value  in  the
accumulator, which is four words back from the contents of the current stack pointer stackP for
Swap and the top of the stack stackA for Roll.



34

  306 32010 swpNow: STA lambda ; shared
  307 30013 LDA stackP
  310 32011 STA savACC ; save stack pointer
  311 02431 JMS pop ; last number on the stack (checks empty stack)
  312 30013 LDA stackP ; last number now in 'dest'
  313 26021 CMP stackA
  314 10317 JLT swp1
  315 76074 PRF errMsg ; "? err\n"
  316 00333 JMP swp2 ; restore stack

  317 32004 swp1: STA src ; temporary stackP from (shared)
  320 24057 SUB D2
  321 32005 STA src+1 ; temporary stackP to   (shared)
  322 30010 LDA lambda
  323 32013 STA stackP

  324 31004 swpLp: LDA @src ; move numbers down on the stack
  325 44004 INC src
  326 33005 STA @src+1
  327 44005 INC src+1
  330 30004 LDA src
  331 26013 CMP stackP ; until top for swap or roll is reached
  332 10324 JLT swpLp

  333 02421 swp2: JMS push ; push last number further up the stack
  334 30011 LDA savACC
  335 32013 STA stackP ; restore stack pointer
  336 00107 JMP gettok

Next, we deal with the four debugging operators “d”, “o”, “x” and “b”, which show intermediate
results on the stack in either decimal, octal, hexadecimal or binary. First, select the number base.
  337 26051 test_d: CMP ASC_d ; "d" decimal
  340 04347 JEQ show

  341 26052 CMP ASC_o ; "o" octal
  342 04347 JEQ show

  343 26053 CMP ASC_x ; "x" hexadecimal
  344 04347 JEQ show

  345 26054 CMP ASC_b ; "b" binary
  346 06371 JNE inpErr

This is followed by the common  show code, which uses the characters “d”, “o”, “x” and “b”
in the accumulator to modify the format string fmtDP to " %#ld",  " %#lo",  " %#lx" and
" %#lb" for the PRF fmtDP formatted print call in the function ‘showSt, which is also called
for decimal output when the RPN expression ends to show the result of an expression.
  347 02446 show: JMS showSt ; " %#ld" " %#lo" " %#lx" " %#lb"

This is followed by the remainder of the RPN expression at that point, which is a useful tracing
feature when debugging a complex RPN expression. 

  350 74030 PCH tab ; "\t" show remainder of RPN expression
  351 74030 PCH tab ; "\t" separated by a wide space:w
  352 30012 LDA expPTR
  353 32010 STA lambda ; shared



35

  354 52010 ROR lambda
  355 31010 LDA @lambda ; two bytes from the expression
  356 10365 JZC show1 ; skip SWP ACC ... CLR C for even bytes

  357 56000 SWP ACC ; swap bytes for odd bytes
  360 20063 AND C177
  361 04366 JZR show2 ; terminates on 2nd byte
  362 44010 INC lambda
  363 74000 PCH ACC ; print first odd byte of rest of expression
  364 34777 CLR C

  365 77010 show1: PRF @lambda ; print rest of expression
  366 44406 show2: INC showFl ; no need to show stack again if terminated now
  367 74031 PCH nl ; "\n"
  370 00107 JMP gettok

Any other  character  token  in  the  RPN expression  is  not  recognized  and  produces  a  short  but
informative error message.
  371 76071 inpErr: PRF inpEms ; "? %c\n"
  372 00000 ADR ACC ; token is character in the accumulator
  373 00107 JMP gettok

Finally, the expEnd code, which is executed when the NULL terminator of the RPN expression is
detected near noNum above.
  374 36406 expEnd: TST showFl ; was output shown already
  375 06102 JNR loop ; yes - don't show again

  376 30051 LDA ASC_d ; no  - restore decimal output
  377 02446 JMS showSt ; " %#ld"
  400 74031 PCH nl ; "\n"
  401 00102 JMP loop ; get new RPN expression

This code is skipped, if the variable showFl was set at show2 above, which means the stack has
just been shown already with no RPN expression remaining. Otherwise, the display base is set to
decimal and  JMS showSt is called. The program then returns to  loop to request a new RPN
expression. This is the end of the main program.

 5.3.3 Subroutines

The subroutines are relatively short and self-contained with hopefully informative comments. The
pop function checks, that no attempt is made to pop a number when the stack is empty. If the stack
is  empty  an  error  message  is  printed  and  a  JMP loop is  executed  to  request  a  new  RPN
expression. Such a direct JMP out of a subroutine is allowed in BALAD because nested subroutine
returns are not organized on a stack like in most modern languages. The  JMP loop out of the
subroutine pop is similar to a longjmp in the C language.

Extra code at the beginning and end of each of the four arithmetic routines add, sub, mul and div
make sure the result is correct for signed integers. Arithmetic overflow for add and sub as well as
divide by zero are flagged as errors. There was not enough memory to detect arithmetic overflow
for  mul.  A new unsigned double-precision multiply algorithm made the whole signed multiply
much shorter and also shortened the multiplies for building numbers. A fast double-precision divide
algorithm by Steve Auer sped up the division. The memory saved was used to provide the “r”
operation to obtain the remainder of the last division.



36

 5.3.4 Help text

As mentioned in section 3.1.1. the BALAD system makes it possible to extend the program code
with a help text, which is output with the -h switch as follows:

  george.bl -h

  Reverse Polish Notation Calculator 'GEORGE'
        0-9     Enter a number terminated by white space or an operator,
                at which point the number is pushed on the stack.
        0-7     A number starting with 0 is octal (0-7 only).
        0-7 a-f A number starting with 0x is hexadecimal (0-9a-f).
        0-1     A number starting with 0b is binary (0-1 only).
        + - * / Arithmetic operators which act on the last two numbers
                popped from the stack. Result is pushed back on the stack.
                Error if there are less than two values on the stack.
        n       NEGATE the last number on the stack.
        r       push the REMAINDER of the last division on the stack.
        Enter   display numbers on the stack as signed decimal.
        d       display numbers on the stack as signed decimal numbers
                before any further operations.
        o x b   display numbers on the stack in octal, hexadecimal or
                binary notation before any further operations.
        E       ENTER a number on the stack if 'E' immediately follows
                a number; else duplicate the last number on the stack.
        D       DROP the last number on the stack.
        S       SWAP the last two numbers on the stack.
        R       ROLL the stack - move last number to the top of the stack.
        C       CLEAR the stack.
        q       QUIT the RPN calculator.

 5.3.5 BALAD on Windows 10

BALAD is a Perl program and to run BALAD on Windows, you need to install either Strawberry
Perl or Active State Perl from https://www.perl.org/get.html. BALAD works with both, although I
prefer  Active State Perl because it provides a more UNIX like environment. BALAD runs as a
command-line program in a Command window. Both systems initially produce the following error
message: Unable to get terminal size. To fix that, execute the following once:
  set TERM=dumb

Windows makes no provision to start interpreted scripts automatically from a Command window.
For that reason all BALAD programs must be called as follows eg. for george.bl:
  perl balad <flags> george.bl

 6 FINALLY
Best of luck with trying out some of your own algorithms using either your favourite editor or
interactive entry mode. This handbook should provide enough information to do serious programs.
Any suggestions or bug reports are very welcome. Please contact me – John Wulff – on:

immediatec@gmail.com with the Subject: BALAD …

The complete BALAD system can be cloned from https://github.com/JohnWulff/balad.

https://github.com/JohnWulff/balad
mailto:immediatec@gmail.com
https://www.perl.org/get.html

	1 INTRODUCTION
	2 THE BALAD COMPUTER
	2.1 THE INSTRUCTION FORMAT
	2.1.1 Double Operand Operations
	2.1.2 Single operand operations

	2.2 THE INSTRUCTIONS
	2.2.1 Double Operand Operations
	2.2.2 Move data instructions
	2.2.3 Single Operand Instructions
	2.2.4 Rotate and shift instructions
	2.2.5 Jump Instructions
	2.2.6 Input instructions
	2.2.7 Output Instructions

	2.3 THE ASSEMBLY LANGUAGE
	2.3.1 Comments
	2.3.2 List of instructions in op code order
	2.3.3 Data Formats

	2.4 HISTORY

	3 THE BALAD ASSEMBLER
	3.1.1 BALAD Help
	3.1.2 Interactive Input Mode
	3.1.3 Listing Options

	4 THE BALAD DEBUGGER
	4.1.1 Running a program
	4.1.2 Instruction Tracing
	4.1.3 Breakpoints
	4.1.4 Watchpoints
	4.1.5 Listing or viewing memory locations
	4.1.6 Modifying memory locations

	5 “GEORGE” a Reverse Polish Notation Calculator
	5.1 PROGRAMMING GEORGE
	5.1.1 Reverse Polish Notation
	5.1.2 Other Operators

	5.2 The overall strategy of GEORGE
	5.3 Analysis of the BALAD implementation george.bl
	5.3.1 Variables and Constants
	5.3.2 Main Program
	5.3.3 Subroutines
	5.3.4 Help text
	5.3.5 BALAD on Windows 10


	6 FINALLY

